3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials

被引:2
|
作者
Won, Phillip [1 ]
Valentine, Connor S. [2 ]
Zadan, Mason [1 ]
Pan, Chengfeng [3 ]
Vinciguerra, Michael [1 ]
Patel, Dinesh K. [1 ]
Ko, Seung Hwan [4 ]
Walker, Lynn M. [2 ]
Majidi, Carmel [1 ]
机构
[1] Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,PA,15213, United States
[2] Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh,PA,15213, United States
[3] Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong,999077, Hong Kong
[4] Department of Mechanical Engineering, Seoul National University, Seoul,08826, Korea, Republic of
来源
ACS Applied Materials and Interfaces | 2022年 / 14卷 / 49期
关键词
3-D printing - 3d soft electrical conductor - 3D-printing - Direct ink write - Electric devices - Electrical conductors - Liquid metal embedded elastomer - Oxide skins - Thermal - Wearable thermal electric device;
D O I
暂无
中图分类号
学科分类号
摘要
Liquid metal embedded elastomers (LMEEs) are composed of a soft polymer matrix embedded with droplets of metal alloys that are liquid at room temperature. These soft matter composites exhibit exceptional combinations of elastic, electrical, and thermal properties that make them uniquely suited for applications in flexible electronics, soft robotics, and thermal management. However, the fabrication of LMEE structures has primarily relied on rudimentary techniques that limit patterning to simple planar geometries. Here, we introduce an approach for direct ink write (DIW) printing of a printable LMEE ink to create three-dimensional shapes with various designs. We use eutectic gallium-indium (EGaIn) as the liquid metal, which reacts with oxygen to form an electrically insulating oxide skin that acts as a surfactant and stabilizes the droplets for 3D printing. To rupture the oxide skin and achieve electrical conductivity, we encase the LMEE in a viscoelastic polymer and apply acoustic shock. For printed composites with a 80% LM volume fraction, this activation method allows for a volumetric electrical conductivity of 5 × 104 S cm-1 (80% LM volume)-significantly higher than what had been previously reported with mechanically sintered EGaIn-silicone composites. Moreover, we demonstrate the ability to print 3D LMEE interfaces that provide enhanced charge transfer for a triboelectric nanogenerator (TENG) and improved thermal conductivity within a thermoelectric device (TED). The 3D printed LMEE can be integrated with a highly soft TED that is wearable and capable of providing cooling/heating to the skin through electrical stimulation. © 2022 American Chemical Society.
引用
收藏
页码:55028 / 55038
相关论文
共 50 条
  • [11] 3D Printing Soft Materials: What Is Possible?
    Trimmer, Barry
    Lewis, Jennifer A.
    Shepherd, Robert F.
    Lipson, Hod
    SOFT ROBOTICS, 2015, 2 (01) : 3 - 6
  • [12] 3D printing of soft magnetic materials: From printing to applications
    Wang, Feng-Hui
    You, Cai-Yin
    Tian, Na
    Liu, He-Guang
    Zhang, Jing
    Zhu, Xiao-Pei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 990
  • [13] 3D Printing for Dielectric Elastomers
    Creegan, Andrew
    Anderson, Iain
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2014, 2014, 9056
  • [14] Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers
    Muth, Joseph T.
    Vogt, Daniel M.
    Truby, Ryan L.
    Menguec, Yigit
    Kolesky, David B.
    Wood, Robert J.
    Lewis, Jennifer A.
    ADVANCED MATERIALS, 2014, 26 (36) : 6307 - 6312
  • [15] 3D Printing Polymeric Materials for Robots with Embedded Systems
    Delda, Ray Noel Medina
    Basuel, Rex Balisalisa
    Hacla, Rodel Peralta
    Martinez, Dan William Carpiano
    Cabibihan, John-John
    Dizon, John Ryan Cortez
    TECHNOLOGIES, 2021, 9 (04)
  • [16] FDM printing of 3D forms with embedded fibrous materials
    Richter, Christoph
    Schmuelling, Stefan
    Ehrmann, Andrea
    Finsterbusch, Karin
    DESIGN, MANUFACTURING AND MECHATRONICS (ICDMM 2015), 2016, : 961 - 969
  • [17] Embedded 3D printing for the development of perfusable in vitro 3D model of soft tissue
    Pitton, Matteo
    Ancona, Elena
    Fare, Silvia
    MATERIALS LETTERS, 2023, 341
  • [18] Status of 3D Printing Technology for Metal Materials
    Lv, Jinjian
    Jia, Changzhi
    Yang, Jianchun
    Zhang, Yufei
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING (ICMSE 2017), 2017, 128 : 256 - 259
  • [19] Modeling electromechanical coupling of liquid metal embedded elastomers while accounting stochasticity in 3D percolation
    Zhao, Yongyi
    Khandagale, Pratik
    Majidi, Carmel
    EXTREME MECHANICS LETTERS, 2021, 48
  • [20] Multimaterial Embedded 3D Printing of Composite Reinforced Soft Actuators
    Wang, Zhenhua
    Zhang, Boyu
    He, Qu
    Chen, Hao
    Wang, Jizhe
    Yao, Yuan
    Zhou, Nanjia
    Cui, Weicheng
    RESEARCH, 2023, 6