On an open problem for definable subsets of covering approximation spaces

被引:0
|
作者
He, Mei [1 ]
Ge, Ying [2 ]
Qian, Jingyu [3 ]
机构
[1] School Mathematical Science, Huaiyin Normal University, Huaian 223300, China
[2] School of Mathematical Science, Soochow University, Suzhou 215006, China
[3] Department of Mathematics, Yancheng Health Vocational and Technical College, Yancheng 224006, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1184 / 1186
相关论文
共 50 条
  • [11] Knowledge Spaces and Reduction of Covering Approximation Spaces
    Li, Tong-Jun
    Gu, Shen-Ming
    Wu, Wei-Zhi
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2015, 2015, 9436 : 164 - 174
  • [12] Some separations in covering approximation spaces
    Ge, Xun
    Li, Jinjin
    Ge, Ying
    World Academy of Science, Engineering and Technology, 2010, 67 : 437 - 441
  • [13] Neighborhood systems and covering approximation spaces
    Syau, Yu-Ru
    Lin, En-Bing
    KNOWLEDGE-BASED SYSTEMS, 2014, 66 : 61 - 67
  • [14] Homomorphisms Between Covering Approximation Spaces
    Lang, Guangming
    Li, Qingguo
    Guo, Lankun
    FUNDAMENTA INFORMATICAE, 2015, 138 (03) : 351 - 371
  • [15] Invariance of separation in covering approximation spaces
    Li, Qifang
    Li, Jinjin
    Ge, Xun
    Li, Yiliang
    AIMS MATHEMATICS, 2021, 6 (06): : 5772 - 5785
  • [16] Approximation partition spaces of covering space
    Zhang, Qing-hua
    Wang, Guo-yin
    Hu, Jun
    Teng, Hai-tao
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 199 - +
  • [17] Some twin approximation operators on covering approximation spaces
    Ma, Liwen
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 56 : 59 - 70
  • [18] On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane
    Conner, GR
    Lamoreaux, JW
    FUNDAMENTA MATHEMATICAE, 2005, 187 (02) : 95 - 110
  • [19] Classifications of Definable Subsets
    S. Boyadzhiyska
    K. Lange
    A. Raz
    R. Scanlon
    J. Wallbaum
    X. Zhang
    Algebra and Logic, 2019, 58 : 383 - 404
  • [20] Classifications of Definable Subsets
    Boyadzhiyska, S.
    Lange, K.
    Raz, A.
    Scanlon, R.
    Wallbaum, J.
    Zhang, X.
    ALGEBRA AND LOGIC, 2019, 58 (05) : 383 - 404