Accurate parameters identification of photovoltaic(PV) models is essential for state assessment of PV systems, as well as for supporting maximum power point tracking and system control, thus holding significant importance. To precisely identify parameters of different PV models, this paper proposes an improved JAYA algorithm based on self-adaptive method, termed Sjaya. Sjaya incorporates three position update strategies, all utilizing adaptive factors, automatically transitioning from explorative to exploitative behaviors, enhancing the population’s ability to escape local optima in the solution space and avoiding premature convergence. The first strategy involves learning towards the best and worst individuals in the population, with the individual iteration direction perturbed by adaptive and normal distribution probability factors to enhance population exploration. The second strategy entails learning towards superior and inferior subgroups, effectively leveraging information from the population, with the ranges of these two subgroups continuously evolving throughout the iteration process. In the third strategy, a novel individual selection mechanism is devised, allocating selection probabilities to individuals based on the exploration phase. Individual updates entail learning from three selected individuals within the population, thereby enhancing population diversity. The proposed Sjaya method is employed to address the parameters identification problem of single diode, double diode, and photovoltaic module models of various photovoltaic types. In numerical experiments, each algorithm was tested 30 times. The average root mean square error (RMSE) of Sjaya for the single diode model and double diode model of RTC France were 9.86022E-04 and 9.849674E-04, respectively. In addition, we use three PV modules to detect Sjaya and competing algorithms. The RMSE of Sjaya on the Photo Watt-PWP 201 module, STM6-40/36 module and STP6-120/36 module is 2.431177E-03, 1.772275E-03 and 1.568231E-02 respectively. The synthesis of experimental findings and analysis indicates that Sjaya outperforms other methods in terms of competitiveness, while also demonstrating high effectiveness and robustness. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.