Controlling chaotic systems via time-delayed control

被引:0
|
作者
机构
[1] Farid, R.
[2] Ibrahim, A.
[3] Abou-Zalam, B.
来源
Farid, R. (ramy5475@yahoo.com) | 1600年 / Springer Verlag卷 / 307期
关键词
Chaotic attractors - Controlling chaotic systems - Lyapunov stabilization - Proportional plus integrals - Taylor approximation - Time delayed - Unstable equilibrium points;
D O I
10.1007/978-3-319-03967-1_3
中图分类号
学科分类号
摘要
Based on Lyapunov stabilization theory, this paper proposes a proportional plus integral time-delayed controller to stabilize unstable equilibrium points (UPOs) embedded in chaotic attractors. The criterion is successfully applied to the classic Chua’s circuit. Theoretical analysis and numerical simulation show the effectiveness of this controller. © Springer International Publishing Switzerland 2014.
引用
收藏
相关论文
共 50 条
  • [21] Projective synchronization in time-delayed chaotic systems
    Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
    Chin. Phys. Lett., 2006, 6 (1418-1421):
  • [22] Delayed feedback control of time-delayed chaotic systems: Analytical approach at Hopf bifurcation
    Vasegh, Nastaran
    Sedigh, Ali Khaki
    PHYSICS LETTERS A, 2008, 372 (31) : 5110 - 5114
  • [23] Chaos control of a chemical chaotic system via time-delayed feedback control method
    Xu C.-J.
    Wu Y.-S.
    International Journal of Automation and Computing, 2014, 11 (04) : 392 - 398
  • [24] Chaos Control of a Chemical Chaotic System via Time-delayed Feedback Control Method
    Chang-Jin Xu
    Yu-Sen Wu
    International Journal of Automation & Computing, 2014, 11 (04) : 392 - 398
  • [25] Projective synchronization of chaotic time-delayed systems via sliding mode controller
    Vasegh, Nastaran
    Khellat, F.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1054 - 1061
  • [26] Generalized projective synchronization in time-delayed chaotic systems
    Feng, Cun-Fang
    Zhang, Yan
    Sun, Jin-Tu
    Qi, Wei
    Wang, Ying-Hai
    CHAOS SOLITONS & FRACTALS, 2008, 38 (03) : 743 - 747
  • [27] Chaotic communication using time-delayed optical systems
    Vanwiggeren, GD
    Roy, R
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2129 - 2156
  • [28] The chaotic control on the occasional nonlinear time-delayed feedback
    Li, P
    Liu, YZ
    Hu, KL
    Wang, BH
    Quan, HJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (17-19): : 2680 - 2685
  • [29] Characteristic Lyapunov vectors in chaotic time-delayed systems
    Pazo, Diego
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [30] Synchronization of time-delayed systems with chaotic modulation and cryptography
    Banerjee, Santo
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 745 - 750