An Effective Technique for Video Condensation and Retrieval Using Convolutional Neural Network with YOLO-Aided Anomaly Detection Framework

被引:0
|
作者
Suhandas [1 ]
Santhosh Kumar, G. [2 ]
机构
[1] A J Institute of Engineering and Technology, Electronics and Communication Engineering, Kottara Chowki, Mangaluru,575006, India
[2] East West College of Engineering, Electronics and Communication Engineering, Yelahanka New Town, Bengaluru,560064, India
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Anomaly detection - Anomaly detection frameworks - Condensation process - Convolutional neural network - Jaccard coefficients - Multimedia contents - Multiple surveillance cameras - Similarity measure - Video condensation and retrieval - You only look once
引用
收藏
页码:991 / 1000
相关论文
共 50 条
  • [41] Video Anomaly Detection Using the Optimization-Enabled Deep Convolutional Neural Network (vol 0, bxaa177, 2020)
    Philip, Felix M.
    Jayakrishnan, V
    Ajesh, F.
    Haseena, P.
    COMPUTER JOURNAL, 2022, 65 (05): : 1352 - 1352
  • [42] Video Based Fire Detection Systems on Forest and Wildland Using Convolutional Neural Network
    HICINTUKA Jean Philippe
    周武能
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (02) : 149 - 157
  • [43] Correction to: Crowd abnormality detection in video sequences using supervised convolutional neural network
    Ruchika Lalit
    Ravindra Kumar Purwar
    Shailesh Verma
    Anchal Jain
    Multimedia Tools and Applications, 2022, 81 : 32701 - 32701
  • [44] CHANNEL-MISMATCH DETECTION ALGORITHM FOR STEREOSCOPIC VIDEO USING CONVOLUTIONAL NEURAL NETWORK
    Lavrushkin, Sergey
    Vatolin, Dmitriy
    2018 - 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO (3DTV-CON), 2018,
  • [45] IMPROVED OBJECT DETECTION IN VIDEO SURVEILLANCE USING DEEP CONVOLUTIONAL NEURAL NETWORK LEARNING
    Dhiyanesh, B.
    Kanna, Rajesh K.
    Rajkumar, S.
    Radha, R.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 913 - 920
  • [46] Sensor Data Based Anomaly Detection in Autonomous Vehicles using Modified Convolutional Neural Network
    Rajendar, Sivaramakrishnan
    Kaliappan, Vishnu Kumar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02): : 859 - 875
  • [47] Anomaly Detection in Automated Vehicles Using Multistage Attention-Based Convolutional Neural Network
    Javed, Abdul Rehman
    Usman, Muhammad
    Rehman, Saif Ur
    Khan, Mohib Ullah
    Haghighi, Mohammad Sayad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4291 - 4300
  • [48] Multiclass anomaly detection in imbalanced structural health monitoring data using convolutional neural network
    Zhao M.
    Sadhu A.
    Capretz M.
    Journal of Infrastructure Preservation and Resilience, 2022, 3 (01):
  • [49] Mass Detection Using Deep Convolutional Neural Network for Mammographic Computer-Aided Diagnosis
    Suzuki, Shintaro
    Zhang, Xiaoyong
    Homma, Noriyasu
    Ichiji, Kei
    Sugita, Norihiro
    Kawasumi, Yusuke
    Ishibashi, Tadashi
    Yoshizawa, Makoto
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 1382 - 1386
  • [50] Computer-Aided Detection Using Non-Convolutional Neural Network Gaussian Processes
    Agrawal, Devanshu
    Yoon, Hong-Jun
    Tourassi, Georgia
    Hinkle, Jacob
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950