Super-resolution using Hidden Markov model and Bayesian detection estimation framework

被引:0
|
作者
Humblot, Fabrice [1 ,2 ]
Mohammad-Djafari, Ali [1 ]
机构
[1] DGA/DET/SCET/CEP/ASC/GIP, Arcueil, 94114, France
[2] LSS/UMR8506 (CNRS-Supèlec-UPS), Gif-sur-Yvette Cedex, 91192, France
关键词
This paper presents a new method for super-resolution (SR)reconstruction of a high-resolution (HR) image from severallow-resolution (LR) images. The HR image is assumed to be composedof homogeneous regions. Thus; the a priori distribution of thepixels is modeled by a finite mixture model (FMM) and a PottsMarkov model (PMM) for the labels. The whole a priori model isthen a hierarchical Markov model. The LR images are assumed to beobtained from the HR image by lowpass filtering; arbitrarilytranslation; decimation; and finally corruption by a random noise.The problem is then put in a Bayesian detection and estimationframework; and appropriate algorithms are developed based onMarkov chain Monte Carlo (MCMC) Gibbs sampling. At the end; wehave not only an estimate of the HR image but also an estimate ofthe classification labels which leads to a segmentation result;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [31] A Multi-precision Quantized Super-Resolution Model Framework
    Liu, Jingyu
    Zhang, Dunbo
    Wang, Qiong
    Shen, Li
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 336 - 353
  • [32] Super-resolution Direction of Arrival Estimation Using a Minimum Mean-Square Error Framework *
    Wu, Yanan
    Jakobsson, Andreas
    Liu, Lutao
    SIGNAL PROCESSING, 2023, 212
  • [33] Video Super-Resolution Using Generalized Gaussian Markov Random Fields
    Chen, Jin
    Nunez-Yanez, Jose
    Achim, Alin
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (02) : 63 - 66
  • [34] A Novel Bayesian Super-Resolution Method for Radar Forward-Looking Imaging Based on Markov Random Field Model
    Tan, Ke
    Lu, Xingyu
    Yang, Jianchao
    Su, Weimin
    Gu, Hong
    REMOTE SENSING, 2021, 13 (20)
  • [35] Point target detection using super-resolution reconstruction
    Dijk, Judith
    van Eekeren, Adam W. M.
    Schutte, Klamer
    de lange, Dirk-Jan J.
    AUTOMATIC TARGET RECOGNITION XVII, 2007, 6566
  • [36] Multiuser Detection Using Hidden Markov Model
    Chen, Fangjiong
    Kwong, Sam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (01) : 107 - 115
  • [37] A Parallel Framework for Video Super-Resolution
    Freitas, Pedro Garcia
    Farias, Mylene C. Q.
    de Araujo, Aleteia P. F.
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 204 - 211
  • [38] Super-Resolution Detection of DNA Nanostructures Using a Nanopore
    Chen, Kaikai
    Choudhary, Adnan
    Sandler, Sarah E.
    Maffeo, Christopher
    Ducati, Caterina
    Aksimentiev, Aleksei
    Keyser, Ulrich F.
    ADVANCED MATERIALS, 2023, 35 (12)
  • [39] A super-resolution framework for tensor decomposition
    Li, Qiuwei
    Prater, Ashley
    Shen, Lixin
    Tang, Gongguo
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2022, 11 (04) : 1287 - 1328
  • [40] Image Deblurring in Super-resolution Framework
    Mandal, Srimanta
    Sao, Anil Kumar
    2013 FOURTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2013,