Machine learning to design full-reference image quality assessment algorithm

被引:0
|
作者
Ling, Wang Yu [1 ]
Hu, Yang [2 ]
机构
[1] Software School of North University of China, North University of China, Taiyuan 030051, China
[2] National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China
关键词
Support vector machines;
D O I
10.11591/telkomnika.v11i6.2720
中图分类号
学科分类号
摘要
引用
收藏
页码:3439 / 3444
相关论文
共 50 条
  • [21] Full-Reference Predictive Modeling of Subjective Image Quality Assessment with ANFIS
    El-Alfy, El-Sayed M.
    Riaz, Mohammed Rehan
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2014, 2015, 8946 : 296 - 311
  • [22] A Full-Reference Image Quality Assessment Method via Deep Meta-Learning and Conformer
    Lang, Shujun
    Liu, Xu
    Zhou, Mingliang
    Luo, Jun
    Pu, Huayan
    Zhuang, Xu
    Wang, Jason
    Wei, Xuekai
    Zhang, Taiping
    Feng, Yong
    Shang, Zhaowei
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (01) : 316 - 324
  • [23] A Full-Reference Video Quality Assessment Algorithm Based on MOVIE Index
    Xu, Zhelun
    Jiang, Xiuhua
    Ma, Xiaoyu
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2018, : 531 - 536
  • [24] RVSIM: a feature similarity method for full-reference image quality assessment
    Yang, Guangyi
    Li, Deshi
    Lu, Fan
    Liao, Yue
    Yang, Wen
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [25] Full-Reference Image Quality Assessment Measure Based on Color Distortion
    Seghir, Zianou Ahmed
    Hachouf, Fella
    COMPUTER SCIENCE AND ITS APPLICATIONS, CIIA 2015, 2015, 456 : 66 - 77
  • [26] Hybrid Feature Similarity Approach to Full-Reference Image Quality Assessment
    Okarma, Krzysztof
    COMPUTER VISION AND GRAPHICS, 2012, 7594 : 212 - 219
  • [27] RVSIM: a feature similarity method for full-reference image quality assessment
    Guangyi Yang
    Deshi Li
    Fan Lu
    Yue Liao
    Wen Yang
    EURASIP Journal on Image and Video Processing, 2018
  • [28] Deep Learning-based Distortion Sensitivity Prediction for Full-Reference Image Quality Assessment
    Ahn, Sewoong
    Choi, Yeji
    Yoon, Kwangjin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 344 - 353
  • [29] Full-reference image quality assessment using statistical local correlation
    Ding, Yong
    Wang, Shaoze
    Zhang, Dong
    ELECTRONICS LETTERS, 2014, 50 (02) : 79 - 80
  • [30] Dynamic Receptive Field Generation for Full-Reference Image Quality Assessment
    Kim, Woojae
    Nguyen, Anh-Duc
    Lee, Sanghoon
    Bovik, Alan Conrad
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4219 - 4231