Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

被引:0
|
作者
Aili, David [1 ]
Allward, Todd [2 ]
Alfaro, Silvia Martinez [2 ]
Hartmann-Thompson, Claire [3 ,4 ]
Steenberg, Thomas [2 ]
Hjuler, Hans Aage [2 ]
Li, Qingfeng [1 ]
Jensen, Jens Oluf [1 ]
Stark, Edmund J. [3 ]
机构
[1] Proton Conductors Section, Department of Energy Conversion and Storage, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
[2] Danish Power Systems, Egeskovvej 6C, DK-3490 Kvistgaard, Denmark
[3] Michigan Molecular Institute, 1910 W. St. Andrews Rd., Midland, MI 48640-2629, United States
[4] Solvay Specialty Polymers, 4500 McGinnis Ferry Rd., Alpharetta, GA 30005-3914, United States
关键词
Conductivity improvement - High temperature polymer electrolyte membranes - Membrane electrode assemblies - Novel electrolytes - Polybenzimidazole - S-POSS - sulfonated polyhedral oligosilsesquioxane - Temperature range;
D O I
暂无
中图分类号
学科分类号
摘要
Composite membranes based on poly(2,2′(m-phenylene)-5, 5Íbibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10 wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180 °C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160 °C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials. © 2014 Elsevier Ltd.
引用
收藏
页码:182 / 190
相关论文
共 50 条
  • [31] Synthesis and Properties of Composite Membranes for Polymer Electrolyte Membrane Fuel Cells
    Chesnokova, Alexandra N.
    Lebedeva, Oksana V.
    Pozhidaev, Yury N.
    Ivanov, Nikolay A.
    Rzhechitskii, Alexander E.
    [J]. BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING III, PTS 1 AND 2, 2014, 884-885 : 251 - 256
  • [32] Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects
    Zhou, Zhengping
    Zholobko, Oksana
    Wu, Xiang-Fa
    Aulich, Ted
    Thakare, Jivan
    Hurley, John
    [J]. ENERGIES, 2021, 14 (01)
  • [33] Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications
    Qian, Wei
    Shang, Yuming
    Fang, Mou
    Wang, Shubo
    Xie, Xiaofeng
    Wang, Jinhai
    Wang, Wenxiao
    Du, Jinyan
    Wang, Yaowu
    Mao, Zongqiang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (17) : 12919 - 12924
  • [34] Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells
    Lufrano, F
    Squadrito, G
    Patti, A
    Passalacqua, E
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 77 (06) : 1250 - 1256
  • [35] Composite STEEK membranes for medium temperature polymer electrolyte fuel cells
    Carbone, A.
    Pedicini, R.
    Sacca, A.
    Gatto, I.
    Passalacqua, E.
    [J]. JOURNAL OF POWER SOURCES, 2008, 178 (02) : 661 - 666
  • [36] Effect of Compression Cycling on Polybenzimidazole-based High-Temperature Polymer Electrolyte Membrane Fuel Cells
    Pinar, F. J.
    Rastedt, M.
    Pilinski, N.
    Wagner, P.
    [J]. FUEL CELLS, 2015, 15 (01) : 140 - 149
  • [37] Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells
    Hooshyari, Khadijeh
    Javanbakht, Mehran
    Adibi, Mina
    [J]. ELECTROCHIMICA ACTA, 2016, 205 : 142 - 152
  • [38] Molecular dynamics simulation analysis of sulfonated polybenzimidazole/[DEMA+][NTf2-]: A potential polymer electrolyte membrane for high-temperature fuel cells
    Fallahzadeh, Rasoul
    Aref, Latif
    Gholamiarjenaki, Nabiollah
    Gholami, Hormoz
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 361
  • [39] Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells
    Zhou, Fan
    Araya, Samuel Simon
    Grigoras, Ionela Florentina
    Andreasen, Soren Juhl
    Kaer, Soren Knudsen
    [J]. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2015, 12 (02):
  • [40] Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole
    Javier Pinar, F.
    Canizares, Pablo
    Rodrigo, Manuel A.
    Ubeda, Diego
    Lobato, Justo
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (09) : 4306 - 4313