Boundedness and stabilization in an indirect pursuit-evasion model with nonlinear signal-dependent diffusion and sensitivity

被引:1
|
作者
Wan, Chuanjia [1 ]
Zheng, Pan [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Indirectpursuit-evasionmodel; Signal-dependentdiffusion; Boundedness; Stabilization; Numericalsimulations; 2-SPECIES CHEMOTAXIS SYSTEM; NAVIER-STOKES SYSTEM; PREDATOR-PREY SYSTEM; GLOBAL BOUNDEDNESS; STABILITY ANALYSIS; HAPTOTAXIS MODEL; EXISTENCE;
D O I
10.1016/j.nonrwa.2024.104234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with an indirect pursuit-evasion model with signal-dependent diffusion and sensitivity........... =. center dot (..1(..)...) -... center dot (..1(..).....) +.. (.... -.. 1 -.. 1..),.....,.. > 0,.... =. center dot (..2(..)...) +... center dot (..2(..).....) +.. (.. 2 -.. 2.. -..),.....,.. > 0,.... =.... +.... -....,.....,.. > 0,.... =.... +.... -....,.....,.. > 0, under homogeneous Neumann boundary conditions in a smoothly bounded domain... R2, where the parameters..,..,..,..,..,..,..,..1,..2,..1,.. 2 are positive,..1(..),..2(..) are signal-dependent diffusion coefficients,..1(..),..2(..) are nonlinear sensitivity functions. Firstly, using the energy estimate and Moser iteration, we demonstrate the existence of a unique globally bounded classical solution for the system. Furthermore, we investigate the asymptotic stabilization of globally bounded solutions. Finally, we provide numerical simulations that validate our theoretical findings.
引用
收藏
页数:15
相关论文
共 50 条