Duality for nondifferentiable multiobjective semi-infinite programming with generalized convexity

被引:0
|
作者
Gao, Xiaoyan [1 ]
机构
[1] School of Science, Xi'an University of Science and Technology, Xi'an, 710054, China
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Functions
引用
收藏
页码:78 / 85
相关论文
共 50 条
  • [41] Perfect duality in semi-infinite and semidefinite programming
    Kortanek, KO
    Zhang, Q
    MATHEMATICAL PROGRAMMING, 2001, 91 (01) : 127 - 144
  • [42] Duality for nonsmooth semi-infinite programming problems
    S. K. Mishra
    M. Jaiswal
    Le Thi Hoai An
    Optimization Letters, 2012, 6 : 261 - 271
  • [43] Duality for inexact semi-infinite linear programming
    Gómez, JA
    Bosch, PJ
    Amaya, J
    OPTIMIZATION, 2005, 54 (01) : 1 - 25
  • [44] Duality for nonsmooth semi-infinite programming problems
    Mishra, S. K.
    Jaiswal, M.
    Le Thi Hoai An
    OPTIMIZATION LETTERS, 2012, 6 (02) : 261 - 271
  • [45] On duality theory of convex semi-infinite programming
    Shapiro, A
    OPTIMIZATION, 2005, 54 (06) : 535 - 543
  • [46] SEMI-INFINITE PROGRAMMING DUALITY - HOW SPECIAL IS IT
    BORWEIN, JM
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1983, 215 : 10 - 36
  • [47] DUALITY IN SEMI-INFINITE LINEAR-PROGRAMMING
    DUFFIN, RJ
    JEROSLOW, RG
    KARLOVITZ, LA
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1983, 215 : 50 - 62
  • [48] On nondifferentiable minimax semi-infinite programming problems in complex spaces
    Jayswal, Anurag
    Kummari, Krishna
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) : 367 - 380
  • [49] Generalized semi-infinite programming:: A tutorial
    Guerra Vazquez, F.
    Ruckmann, J.-J.
    Stein, O.
    Still, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (02) : 394 - 419
  • [50] OPTIMALITY CONDITIONS AND DUALITY IN MULTIOBJECTIVE GENERALIZED FRACTIONAL PROGRAMMING WITH GENERALIZED CONVEXITY
    Gao, Ying
    Rong, Weidong
    PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (03): : 403 - 413