Amplitude death in steadily forced chaotic systems

被引:11
|
作者
Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Chin. Phys. | 2007年 / 9卷 / 2825-2829期
关键词
Lorentz force - Numerical analysis;
D O I
10.1088/1009-1963/16/9/055
中图分类号
学科分类号
摘要
Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [41] Amplitude death in coupled chaotic solid-state lasers with cavity-configuration-dependent instabilities
    Wei, Ming-Dar
    Lun, Jau-Ching
    APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [42] STATISTICAL PROPERTIES OF NONLINEAR MODE SPECTRUM FOR LARGE-AMPLITUDE FORCED VIBRATION SYSTEMS
    MA, AJ
    CHEN, SH
    LIU, ZS
    COMPUTERS & STRUCTURES, 1995, 56 (06) : 897 - 902
  • [43] Explosive death transitions in complex networks of limit cycle and chaotic systems
    Pranesh, Samana
    Gupta, Sayan
    CHAOS SOLITONS & FRACTALS, 2023, 168
  • [44] Amplitude bounds of linear forced vibrations
    Hu, B
    Schiehlen, W
    ARCHIVE OF APPLIED MECHANICS, 1996, 66 (05) : 357 - 368
  • [45] Amplitude bounds of linear forced vibrations
    Univ of Stuttgart, Stuttgart, Germany
    Arch Appl Mech, 5 (357-368):
  • [46] Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems
    Bogomolov, Sergey A.
    Slepnev, Andrei V.
    Strelkova, Galina I.
    Schoell, Eckehard
    Anishchenko, Vadim S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 : 25 - 36
  • [47] FORCED VIBRATIONS OF FINITE AMPLITUDE IN A TUBE
    ZAREMBO, LK
    SOVIET PHYSICS ACOUSTICS-USSR, 1967, 13 (02): : 257 - &
  • [48] Amplitude death criteria for coupled complex Ginzburg-Landau systems
    Van Gorder, Robert A.
    Krause, Andrew L.
    Kwiecinski, James A.
    NONLINEAR DYNAMICS, 2019, 97 (01) : 151 - 159
  • [49] Analytical criterion for amplitude death in nonautonomous systems with piecewise nonlinear coupling
    Xu, D. L.
    Zhang, H. C.
    Lu, C.
    Qi, E. R.
    Tian, C.
    Wu, Y. S.
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [50] Amplitude death in systems of coupled oscillators with distributed-delay coupling
    Y. N. Kyrychko
    K. B. Blyuss
    E. Schöll
    The European Physical Journal B, 2011, 84 : 307 - 315