Research on Network Traffic Classification Based on Graph Neural Network

被引:0
|
作者
University of Science and Technology Liaoning, Liaoning, Anshan [1 ]
114051, China
不详 [2 ]
机构
来源
IAENG Int. J. Comput. Sci. | 2024年 / 12卷 / 2043-2050期
关键词
Long short-term memory;
D O I
暂无
中图分类号
学科分类号
摘要
Network traffic classification is a critical concern in network security and management, essential for accurately differentiating among various network applications, optimizing service quality, and improving user experience. The exponential increase in worldwide Internet users and network traffic is continuously augmenting the diversity and complexity of network applications, rendering the Internet environment increasingly intricate and dynamic. Conventional machine learning techniques possess restricted processing abilities for network traffic attributes and struggle to address the progressively intricate traffic classification tasks in contemporary networks. In recent years, the swift advancement of deep learning technologies, particularly Graph Neural Networks (GNN), has yielded significant improvements in network traffic classification. GNN can capture the structured information among network nodes and extract the latent features of network traffic. Nonetheless, current network traffic classification models continue to exhibit deficiencies in the thoroughness of feature extraction. To tackle the problem, this research proposes a method for constructing traffic graphs utilizing numerical similarity and byte distance proximity by exploring the latent correlations among bytes, and it constructs a model, SDA-GNN, based on Graph Isomorphic Networks (GIN) for the categorization of network traffic. In particular, the Dynamic Time Warping (DTW) distance is employed to evaluate the disparity in byte distributions, a channel attention mechanism is utilized to extract additional features, and a Long Short-Term Memory Network (LSTM) enhances the stability of the training process by extracting sequence characteristics. Experimental findings on two actual datasets indicate that the SDA-GNN model surpasses other baseline techniques across multiple assessment parameters in the network traffic classification task, achieving classification accuracy enhancements of 2.19% and 1.49%, respectively. © (2024), (International Association of Engineers). All rights reserved.
引用
收藏
相关论文
共 50 条
  • [31] Research on Satellite Network Traffic Prediction Based on Improved GRU Neural Network
    Liu, Zhiguo
    Li, Weijie
    Feng, Jianxin
    Zhang, Jiaojiao
    SENSORS, 2022, 22 (22)
  • [32] Powerful graph neural network for node classification of the IoT network
    Sejan, Mohammad Abrar Shakil
    Rahman, Md Habibur
    Aziz, Md Abdul
    Tabassum, Rana
    Baik, Jung-In
    Song, Hyoung-Kyu
    INTERNET OF THINGS, 2024, 28
  • [33] Feature pyramid-based graph convolutional neural network for graph classification
    Lu, Mingming
    Xiao, Zhixiang
    Li, Haifeng
    Zhang, Ya
    Xiong, Neal N.
    JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 128
  • [34] An artificial deep neural network for the binary classification of network traffic
    Abdullah S.A.
    Al-Ashoor A.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (01): : 402 - 408
  • [35] Deep Neural Network-based Method for Detection and Classification of Malicious Network Traffic
    Usman, Muhammad
    Ahmad, Shahbaz
    Saeed, Muhammad Mubashir
    2021 IEEE WORKSHOP ON MICROWAVE THEORY AND TECHNIQUES IN WIRELESS COMMUNICATIONS, MTTW'21, 2021, : 193 - 198
  • [36] An Artificial Deep Neural Network for the Binary Classification of Network Traffic
    Abdullah, Shubair A.
    Al-Ashoor, Ahmed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 402 - 408
  • [37] Hybrid Deep Neural Network - Hidden Markov Model Based Network Traffic Classification
    Tan, Xincheng
    Xie, Yi
    COMMUNICATIONS AND NETWORKING, CHINACOM 2018, 2019, 262 : 604 - 614
  • [38] A Network Traffic Prediction Model Based on Graph Neural Network in Software-Defined Networking
    Li, Guoyan
    Shang, Yihui
    Liu, Yi
    Zhou, Xiangru
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [39] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [40] Network Traffic Prediction based on Neural Network
    Feng, Gao
    2015 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA AND SMART CITY (ICITBS), 2016, : 527 - 530