Graphdiyne-Based Nickel-Cobalt Bimetallic Sulfide Cocatalyst for Efficient Photocatalytic Hydrogen Evolution

被引:0
|
作者
Li, Bingzhu [1 ,2 ,3 ]
Ma, Xiaohua [1 ,2 ,3 ]
Lei, Minjun [1 ,2 ,3 ]
Wang, Tian [1 ,2 ,3 ]
Jin, Zhiliang [1 ,2 ,3 ]
机构
[1] North Minzu Univ, Sch Chem & Chem Engn, Yinchuan 750021, Peoples R China
[2] North Minzu Univ, Ningxia Key Lab Solar Chem Convers Technol, Yinchuan 750021, Peoples R China
[3] North Minzu Univ, Key Lab Chem Engn & Technol, State Ethn Affairs Commiss, Yinchuan 750021, Peoples R China
来源
SOLAR RRL | 2024年 / 8卷 / 23期
关键词
CdS; CoNiS<italic>x</italic>; graphdiyne; hydrogen production; photocatalysis; S-SCHEME HETEROJUNCTION; IN-SITU; HYDROTHERMAL SYNTHESIS; WATER; CONSTRUCTION; PERFORMANCE; GRAPHENE; PROMOTE;
D O I
10.1002/solr.202400600
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Initially, CoNiSx is synthesized on the graphdiyne (GDY) surface through a precipitation method, followed by the straightforward physical stirring approach to attach CoNiSx/GDY to the maple leaf CdS. This synthesis method significantly mitigates the accumulation of CoNiSx/GDY and concurrently augments the count of sites that are active for generating hydrogen. This three-phase composite demonstrates exceptional performance in the area of photocatalytic hydrogen production, achieving a hydrogen evolution rate of 15.37 mmol<middle dot>h-1 g-1. The employment of various characterization methodologies and density functional theory calculations have demonstrated the formation of a Z-scheme heterojunction forms between GDY and CdS. This discovery indicates that the combination of GDY and CdS markedly improves the photogenerated carrier separation capability of the composite catalyst. The cocatalyst CoNiSx loaded on GDY effectively accelerates the electron transfer from the conduction band of GDY, thereby reducing the photogenerated carrier complexation of GDY. This phenomenon results in an increased quantity of photogenerated electron holes engaged in the redox reaction, ultimately achieving exceptional photocatalytic performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Bimetallic nickel-cobalt sulfide grown on graphene foam for high-performance asymmetric supercapacitor
    Chen, Zhengyan
    Xue, Runzhuo
    Fan, Baoli
    Wang, Yilan
    Tian, Wenhui
    Pei, Lu
    Jin, Yanling
    Guo, Zhengzheng
    Sun, Zhenfeng
    Ren, Fang
    Ren, Penggang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1007
  • [32] Spiny Spherical Nickel-Cobalt Bimetallic Sulfide Nanocomposite for High-Energy-Density Pseudocapacitor
    Pan, Hongfei
    Fan, Meiling
    Liu, Guoliang
    Zeng, Sixiu
    Wang, Rui
    Zhang, Haining
    ENERGY & FUELS, 2023, 37 (02) : 1396 - 1403
  • [33] Strong interface coupling of H-substituted graphdiyne-based promotes photocatalytic hydrogen production
    Xiao, Qian
    Yang, Xueying
    Guo, Xin
    Jin, Zhiliang
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 359
  • [34] Synergistic effect of bimetallic cobalt-based sulfide enhances the performance of ZnSe photocatalytic hydrogen evolution by Z-scheme
    Wang H.
    Feng S.
    Huang H.
    Ma C.
    Dai X.
    Bian Z.
    Wu K.
    Fan L.
    Hua J.
    Journal of Alloys and Compounds, 2023, 967
  • [35] One-dimensional nickel-cobalt bimetallic phosphide nanostructures for the oxygen evolution reaction
    Wang, Yue
    Chang, Xin
    Huang, Zexing
    Fan, Jiahui
    Li, Lu
    Zhang, Mingyi
    SUSTAINABLE ENERGY & FUELS, 2023, 8 (01) : 159 - 165
  • [36] C60-Decorated nickel-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction
    Du, Zhiling
    Jannatun, Nahar
    Yu, Danyang
    Ren, Juan
    Huang, Wenhuan
    Lu, Xing
    NANOSCALE, 2018, 10 (48) : 23070 - 23079
  • [37] Vanadium-doped Nickel-Cobalt Phosphides/Sulfides/Selenides for efficient and stable alkaline hydrogen evolution
    Tian, Zhiyuan
    Song, Yanhui
    Gan, Manyuan
    Shen, Yongqing
    Zhang, Pengfei
    Liu, Peizhi
    Liu, Chuang
    Xu, Bingshe
    Guo, Junjie
    RESULTS IN ENGINEERING, 2024, 22
  • [38] Ultrafine CoO nanoparticles as an efficient cocatalyst for enhanced photocatalytic hydrogen evolution
    Chu, Jiayu
    Sun, Guoji
    Han, Xijiang
    Chen, Xin
    Wang, Jiajun
    Hu, Wen
    Waluyo, Iradwikanari
    Hunt, Adrian
    Du, Yunchen
    Song, Bo
    Xu, Ping
    NANOSCALE, 2019, 11 (33) : 15633 - 15640
  • [39] Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution
    Li, Junke
    Li, Mei
    Jin, Zhiliang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 592 : 237 - 248
  • [40] The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride:Boosted photocatalytic hydrogen evolution performance and mechanism explorationOA附视频
    Zhangqian Liang
    Yanjun Xue
    Xinyu Wang
    Xiaoli Zhang
    Jian Tian
    Hongzhi Cui
    Nano Materials Science, 2023, (02) : 202 - 209