Accelerating sulfur redox kinetics by rare earth single-atom electrocatalysts toward efficient lithium-sulfur batteries

被引:6
|
作者
Lian, Zichao [1 ]
Ma, Lin [1 ]
Wu, Hanxiang [1 ]
Xiao, Han [1 ]
Yang, Yupeng [1 ]
Zhang, Jie [1 ]
Zi, Jiangzhi [1 ]
Chen, Xi [1 ]
Wang, Wei [2 ,3 ]
Li, Hexing [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat & Chem, Shanghai 200093, Peoples R China
[2] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA
基金
中国国家自然科学基金;
关键词
Rare earth metals; Single-atoms catalysis; Hybridized orbitals; Sulfur reduction reaction;
D O I
10.1016/j.apcatb.2024.124661
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Toward practical lithium-sulfur (Li-S) batteries, there is a pressing need to improve the rate performance and longevity of cells. Herein, we report developing a cathode electrocatalyst Lu SA/NC, capable of accelerating sulfur redox kinetics with a high specific capacity of 1391.8 mAh g- 1 at 0.1 C, and a low-capacity fading rate of 0.049 % per cycle over 1000 cycles even with a high sulfur loading (5.96 mg cm- 2). The unparalleled cathodes are built upon the unique structure in which single-atoms of rare earth metals are doped in nitrogen-doped porous carbon (RM SAs/NC). The theoretical and experimental studies reveal that the rare earth Lu atom has an unrivaled adsorption capacity for polysulfides and can promote facile deposition and dissolution reactions in charge-discharge processes. The in-situ Raman experiments provide direct evidence for its promotion of polysulfide transformation to eliminate the shuttle effect. The theoretical calculations suggest that the presence of f-dp hybridization enables accelerating sulfur reduction kinetics and enhancing lithium-sulfur battery performance. The strategic paradigm introduced in this study underscores significant practical potential in the exploration of rare earth single-atom catalysts for high performance Li-S batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Engineering single-atom catalysts as multifunctional polysulfide and lithium regulators toward kinetically accelerated and durable lithium-sulfur batteries
    Wang, Donghua
    Ma, Kaikai
    Hao, Jiamao
    Zhang, Wenyuan
    Shi, Haofeng
    Wang, Chengdeng
    Xiong, Zhihao
    Bai, Zhiming
    Chen, Fu-Rong
    Guo, Junjie
    Xu, Bingshe
    Yan, Xiaoqin
    Gu, Yousong
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [22] Single-atom catalysts supported on graphene/electride heterostructures for the enhanced sulfur reduction reaction in lithium-sulfur batteries
    Qi, Siyun
    Li, Chuanchuan
    Chen, Gang
    Zhao, Mingwen
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 738 - 746
  • [23] Single-atom catalysts supported on graphene/electride heterostructures for the enhanced sulfur reduction reaction in lithium-sulfur batteries
    Siyun Qi
    Chuanchuan Li
    Gang Chen
    Mingwen Zhao
    Journal of Energy Chemistry, 2024, 97 (10) : 738 - 746
  • [24] Copolymerization of Sulfur Chains with Vinyl Functionalized Metal-Organic Framework for Accelerating Redox Kinetics in Lithium-Sulfur Batteries
    Zeng, Qinghan
    Li, Xin
    Gong, Wei
    Guo, Sijia
    Ouyang, Yuan
    Li, Dixiong
    Xiao, Yingbo
    Tan, Chao
    Xie, Lin
    Lu, Haibin
    Zhang, Qi
    Huang, Shaoming
    ADVANCED ENERGY MATERIALS, 2022, 12 (21)
  • [25] Dual-Functional Organotelluride Additive for Highly Efficient Sulfur Redox Kinetics and Lithium Regulation in Lithium-Sulfur Batteries
    Wei Zhang
    Fenfen Ma
    Qiang Wu
    Ziqi Zeng
    Wei Zhong
    Shijie Cheng
    Xin Chen
    Jia Xie
    Energy & Environmental Materials , 2023, (03) : 225 - 232
  • [26] Single-atom cobalt encapsulated in carbon nanotubes as an effective catalyst for enhancing sulfur conversion in lithium-sulfur batteries
    Samawi, Khalida Abaid
    Salman, Ekhlas Abd-Alkuder
    Hasan, Hiba Ali
    Mahmoud, HassabAlla M. A.
    Mohealdeen, Sura Mohammad
    Abdulkareem-Alsultan, G.
    Abdulmalek, Emilia
    Nassar, Maadh Fawzi
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (05) : 464 - 476
  • [27] Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium-Sulfur Batteries
    Lu, Chao
    Chen, Yan
    Yang, Yuan
    Chen, Xi
    NANO LETTERS, 2020, 20 (07) : 5522 - 5530
  • [28] Dual-Functional Organotelluride Additive for Highly Efficient Sulfur Redox Kinetics and Lithium Regulation in Lithium-Sulfur Batteries
    Zhang, Wei
    Ma, Fenfen
    Wu, Qiang
    Zeng, Ziqi
    Zhong, Wei
    Cheng, Shijie
    Chen, Xin
    Xie, Jia
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)
  • [29] Emerging redox kinetics promoters for the advanced lithium-sulfur batteries
    Wang, Hongxing
    Ma, Chengwei
    Tan, Jiewen
    Zhou, Jiangqi
    MATERIALS TODAY CHEMISTRY, 2024, 42
  • [30] High-Entropy Catalysis Accelerating Stepwise Sulfur Redox Reactions for Lithium-Sulfur Batteries
    Xu, Yunhan
    Yuan, Wenchuang
    Geng, Chuannan
    Hu, Zhonghao
    Li, Qiang
    Zhao, Yufei
    Zhang, Xu
    Zhou, Zhen
    Yang, Chunpeng
    Yang, Quan-Hong
    ADVANCED SCIENCE, 2024, 11 (31)