Pre-carbonization for regulating sucrose-based hard carbon pore structure as high plateau capacity sodium-ion battery anode

被引:0
|
作者
Yan, Yuanting [1 ,2 ]
Chen, Ge [1 ,2 ]
Liu, Wenjing [1 ]
Qu, Meizhen [1 ]
Xie, Zhengwei [1 ]
Wang, Feng [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Organ Chem, Chengdu 610041, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
High plateau capacity; Closed pore; Pre-carbonization; Sucrose; STORAGE;
D O I
10.1016/j.est.2024.114590
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Although hard carbon still suffers from low initial coulombic efficiency and a controversial sodium storage mechanism, it is widely explored and utilized as an anode material for sodium-ion batteries due to its affordability and accessibility. This work used pre-carbonization to construct sufficient reaction time of volatile reactive molecules released from matrix in the carbon interlayers, hence optimizing the structure of the nanopore and the graphite microcrystal inside the sucrose-based hard carbon. The sucrose-based hard carbon after pre-carbonization treatment has an expanded carbon layer spacing, an appropriate micro-mesopore ratio, and a distinct closed pore structure. The result provides evidence that the low-voltage plateau region capacity is related to two Na+ storage behaviors: intercalation between carbon layers and pore-filling in nanopores. Further larger interlayer distances, lower micro-mesoporous ratios, and closed pores are favorable for sodium storage in the low-voltage plateau region which is assisting to improve the initial coulombic efficiency. In comparison to previously published studies, the pre-carbonized hard carbon at 450 degrees C with a heating rate of 3 degrees C/min exhibits an impressive plateau capacity of 277 mAh g(-1), increasing the contribution of the plateau capacity from 54 % to 63 %, while also enhancing cycling and rate performance. Furthermore, it has a significant initial coulombic efficiency (ICE) of 85 % and a noteworthy reversible specific capacity of 374 mAh g(-1) at a current density of 20 mA g(-1), which is noticeably better than the biomass hard carbon documented in the literature. Achieving a sustained low-voltage plateau capacity through microstructure modulation is crucial for producing hard carbon with both high specific capacity and rewarding ICE. This study presents a novel approach for the preparation sucrose based hard carbon of high plateau capacity and is expected to contribute significantly to the development of high energy density sodium-ion battery energy storage systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Stable Biomass-Derived Hard Carbon Anode for High-Performance Sodium-Ion Full Battery
    Hu, Hai-Yan
    Xiao, Yao
    Ling, Wei
    Wu, Yuan-Bo
    Wang, Ping
    Tan, Shuang-Jie
    Xu, Yan-Song
    Guo, Yu-Jie
    Chen, Wan-Ping
    Tang, Rui-Ren
    Zeng, Xian-Xiang
    Yin, Ya-Xia
    Wu, Xiong-Wei
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [32] High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites
    Kumaresan, Thileep Kumar
    Masilamani, Shanmugharaj Andikkadu
    Raman, Kalaivani
    Karazhanov, Smagul Zh
    Subashchandrabose, Raghu
    ELECTROCHIMICA ACTA, 2021, 368
  • [33] Insights into the Plateau Capacity Dependence on the Rate Performance and Cycling Stability of a Superior Hard Carbon Microsphere Anode for Sodium-Ion Batteries
    Nagmani
    Puravankara, Sreeraj
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 10045 - 10052
  • [34] Rational manipulation of electrolyte to induce homogeneous SEI on hard carbon anode for sodium-ion battery
    Liu, Lu
    Xiao, Lingling
    Sun, Zhi
    Bashir, Shahid
    Kasi, Ramesh
    Gu, Yonghong
    Subramaniam, Ramesh
    JOURNAL OF ENERGY CHEMISTRY, 2024, 94 : 414 - 429
  • [35] Rational manipulation of electrolyte to induce homogeneous SEI on hard carbon anode for sodium-ion battery
    Lu Liu
    Lingling Xiao
    Zhi Sun
    Shahid Bashir
    Ramesh Kasi
    Yonghong Gu
    Ramesh Subramaniam
    Journal of Energy Chemistry, 2024, 94 (07) : 414 - 429
  • [36] Deconstruction Engineering of Lignocellulose Toward High-Plateau-Capacity Hard Carbon Anodes for Sodium-Ion Batteries
    Huang, Zongyi
    Huang, Jiahong
    Zhong, Lei
    Zhang, Wenli
    Qiu, Xueqing
    SMALL, 2024,
  • [37] Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries
    Zheng, Peng
    Liu, Ting
    Guo, Shouwu
    SCIENTIFIC REPORTS, 2016, 6
  • [38] Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries
    Peng Zheng
    Ting Liu
    Shouwu Guo
    Scientific Reports, 6
  • [39] Micropore-modulated graphitization for the construction of high-capacity hard carbon anode for sodium-ion batteries
    Duan, Zhihua
    Ye, Xiaoji
    Chen, Jingxun
    Chen, Jieqi
    Li, Jiakun
    Li, Zhenghui
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [40] Pore modulation in coal-based hard carbon for sodium-ion batteries
    Pei, Hainan
    Wang, Ru
    Li, Ying
    Xue, Yunfei
    Chen, Yaxin
    Jiang, Jiangmin
    Kong, Xiangkai
    Zhuang, Quanchao
    Ju, Zhicheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 690