Dynamically corrected gates in silicon singlet-triplet spin qubits

被引:0
|
作者
Walelign, Habitamu Y. [1 ]
Cai, Xinxin [1 ]
Li, Bikun [2 ,3 ]
Barnes, Edwin [2 ,4 ]
Nichol, John M. [1 ]
机构
[1] Department of Physics and Astronomy, University of Rochester, Rochester,NY,14627, United States
[2] Department of Physics, Virginia Tech, Blacksburg,VA,24061, United States
[3] Pritzker School of Molecular Engineering, The University of Chicago, Chicago,IL,60637, United States
[4] Virginia Tech, Center for Quantum Information Science and Engineering, Blacksburg,VA,24061, United States
基金
美国国家科学基金会;
关键词
Fault tolerant computer systems - Gallium compounds - Gates (transistor) - Germanium compounds - Quantum noise - Quantum optics - Qubits - Radiation hardening - Semiconducting indium phosphide - Semiconductor quantum dots;
D O I
10.1103/PhysRevApplied.22.064029
中图分类号
学科分类号
摘要
Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent control constraints in these systems. In this work, we experimentally implement dynamically corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot. The corrected gates reduce infidelities by about a factor of 3, resulting in gate fidelities above 0.99 for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and their specific performance reveals an unexpected distortion in our experimental setup. © 2024 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [21] Singlet-triplet gaps and spin potentials
    Vargas, R
    Galván, M
    Vela, A
    JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (18): : 3134 - 3140
  • [22] Charge-noise tolerant exchange gates of singlet-triplet qubits in asymmetric double quantum dots
    Hiltunen, Tuukka
    Bluhm, Hendrik
    Mehl, Sebastian
    Harju, Ari
    PHYSICAL REVIEW B, 2015, 91 (07):
  • [23] Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits
    Buterakos, Donovan
    Throckmorton, Robert E.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2018, 97 (04)
  • [24] Simulation of the coupling strength of capacitively coupled singlet-triplet qubits
    Buterakos, Donovan
    Throckmorton, Robert E.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [25] Composite pulses for robust universal control of singlet-triplet qubits
    Wang, Xin
    Bishop, Lev S.
    Kestner, J. P.
    Barnes, Edwin
    Sun, Kai
    Das Sarma, S.
    NATURE COMMUNICATIONS, 2012, 3
  • [26] Charge noise suppression in capacitively coupled singlet-triplet spin qubits under magnetic field
    Chan, Guo Xuan
    Kestner, J. P.
    Wang, Xin
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [27] Readout of singlet-triplet qubits at large magnetic field gradients
    Orona, Lucas A.
    Nichol, John M.
    Harvey, Shannon P.
    Bottcher, Charlotte G. L.
    Fallahi, Saeed
    Gardner, Geoffrey C.
    Manfra, Michael J.
    Yacoby, Amir
    PHYSICAL REVIEW B, 2018, 98 (12)
  • [28] Capacitative coupling of singlet-triplet qubits in different interqubit geometries
    Hiltunen, Tuukka
    Harju, Ari
    PHYSICAL REVIEW B, 2014, 90 (12)
  • [29] Robust operating point for capacitively coupled singlet-triplet qubits
    Wolfe, M. A.
    Calderon-Vargas, F. A.
    Kestner, J. P.
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [30] Realizing singlet-triplet qubits in multivalley Si quantum dots
    Culcer, Dimitrie
    Cywinski, Lukasz
    Li, Qiuzi
    Hu, Xuedong
    Das Sarma, S.
    PHYSICAL REVIEW B, 2009, 80 (20)