An integrated parameter optimization system for MIMO plastic injection molding using soft computing

被引:0
|
作者
机构
[1] Chen, Wen-Chin
[2] Liou, Pen-Hsi
[3] Chou, Shu-Chuan
来源
Chen, W.-C. (wenchin@chu.edu.tw) | 1600年 / Springer London卷 / 73期
关键词
This study proposes an integrated optimization system to find out the optimal parameter settings of multi-input multi-output (MIMO) plastic injection molding (PIM) process. The system is divided into two stages. In the first stage; the Taguchi method and analysis of variance (ANOVA) are employed to perform the experimental work; calculate the signal-to-noise (S/N) ratio; and determine the initial process parameters. The back-propagation neural network (BPNN) is employed to construct an S/N ratio predictor and a quality predictor. The S/N ratio predictor and genetic algorithms (GA) are integrated to search for the first optimal parameter combination. The purpose of this stage is to reduce the process variance. In the second stage; the quality predictor is combined with particle swarm optimization (PSO) to find the final optimal parameters. The quality characteristics; product length and warpage; are dedicated to finding the optimal process parameters. After the numerical analysis; the optimal parameters can meet the lowest variance and the product quality requirements simultaneously. Experimental results show that the proposed optimization system can not only satisfy the quality specification but also improve stability of the PIM process. © 2014 Springer-Verlag London;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:9 / 12
相关论文
共 50 条
  • [31] Simulation Process of Injection Molding and Optimization for Automobile Instrument Parameter in Embedded System
    Ramesh, S.
    Nirmala, P.
    Ramkumar, G.
    Sahoo, Satyajeet
    Anitha, G.
    Gnanasekar, A. K.
    Isaac JoshuaRamesh Lalvani, J.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [32] Intelligent methods for the process parameter determination of plastic injection molding
    Huang Gao
    Yun Zhang
    Xundao Zhou
    Dequn Li
    Frontiers of Mechanical Engineering, 2018, 13 : 85 - 95
  • [33] Intelligent methods for the process parameter determination of plastic injection molding
    Gao, Huang
    Zhang, Yun
    Zhou, Xundao
    Li, Dequn
    FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (01) : 85 - 95
  • [34] The Influence of Injection Molding Parameter on Properties of Thermally Conductive Plastic
    Azis, N. Hafizah
    Rahim, M. Zulafif
    Sa'ude, Nasuha
    Rafai, N.
    Yusof, M. S.
    Tobi, A. L. M.
    Sharif, Z. M.
    Ibrahim, M. Rasidi
    Ismail, A. E.
    MECHANICAL ENGINEERING, SCIENCE AND TECHNOLOGY INTERNATIONAL CONFERENCE, 2017, 203
  • [35] Process parameters optimization using a novel classification model for plastic injection molding
    Zhang, Yun (marblezy@hust.edu.cn), 1600, Springer London (94): : 1 - 4
  • [36] Process parameters optimization using a novel classification model for plastic injection molding
    Huang Gao
    Yun Zhang
    Yang Fu
    Ting Mao
    Huamin Zhou
    Dequn Li
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 357 - 370
  • [37] Process parameters optimization using a novel classification model for plastic injection molding
    Gao, Huang
    Zhang, Yun
    Fu, Yang
    Mao, Ting
    Zhou, Huamin
    Li, Dequn
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (1-4): : 357 - 370
  • [38] Optimization of Process Parameters using DOE, RSM, and GA in Plastic Injection Molding
    Chen, W. C.
    Kurniawan, Denni
    Fu, G. L.
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 472-475 : 1220 - +
  • [39] Gate location optimization scheme for plastic injection molding
    Zhai, Ming
    Lam, Yeecheong
    Au, Chikit
    E-Polymers, 2009,
  • [40] The simulation and optimization of aspheric plastic lens injection molding
    Wen Jialing
    Wen Pengfei
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2005, 20 (2): : 86 - 89