A triple population adaptive differential evolution

被引:0
|
作者
Gong, Jiabei [1 ]
Laili, Yuanjun [1 ,2 ,3 ]
Zhang, Jiayi [1 ]
Zhang, Lin [1 ,3 ]
Ren, Lei [1 ,2 ,3 ]
机构
[1] School of Automation Science and Electrical Engineering, Beihang University, Beijing,100191, China
[2] Zhongguancun Laboratory, Beijing,100094, China
[3] State Key Laboratory of Intelligent Manufacturing Systems Technology, Beijing,100854, China
基金
中国国家自然科学基金;
关键词
C++ (programming language);
D O I
10.1016/j.ins.2024.121401
中图分类号
学科分类号
摘要
The Differential Evolution (DE) algorithm is one of the most efficient algorithms for complex numerical optimization. However, the nature of differential mutation and crossover hinders the individuals from a major change and always guides them toward their superior neighbors. There's a lack of useful directional information to help the population escape from early convergence. To solve the above problem, this paper proposes a novel Triple-population-based Adaptive Differential Evolution (TPADE) to enhance the evolutionary efficiency in solving various complex numerical optimization problems. First, a population division method with symmetrical linear reduction is designed to divide the parent population of each iteration into three sub-populations of different sizes, i.e., superior sub-population, medium sub-population, and inferior sub-population. Each sub-population adopts distinct differential mutation and crossover operators to maintain balanced search directions. Second, a superior-trial-preserved selection mechanism is proposed to screen useful directional information to guide the next iteration of evolution. Third, an effective parameter adaptation strategy is designed with the linear population size reduction strategy to avoid redundant search. Experiments are then conducted to show that the TPADE exhibits well performance compared with eleven state-of-the-art DE variants, CEC winners, and their variants on the CEC'2014, CEC'2017, and CEC'2022 benchmark suites. The C++ source code of TPADE can be downloaded from https://github.com/DoubleGong/TPADE. © 2024
引用
收藏
相关论文
共 50 条
  • [31] Truss structure optimization using adaptive multi-population differential evolution
    Chun-Yin Wu
    Ko-Ying Tseng
    Structural and Multidisciplinary Optimization, 2010, 42 : 575 - 590
  • [32] Self-Adaptive Differential Evolution Algorithm with a Small and Varying Population Size
    Brest, Janez
    Boskovic, Borko
    Zamuda, Ales
    Fister, Iztok
    Maucec, Mirjam Sepesy
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [33] An Adaptive Differential Evolution Algorithm with Automatic Population Resizing for Global Numerical Optimization
    Choi, Tae Jong
    Ahn, Chang Wook
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2014, 2014, 472 : 68 - 72
  • [34] Dual-Population Adaptive Differential Evolution Algorithm L-NTADE
    Stanovov, Vladimir
    Akhmedova, Shakhnaz
    Semenkin, Eugene
    MATHEMATICS, 2022, 10 (24)
  • [35] On Modification of Population-Based Approach Used in Adaptive Differential Evolution Algorithm
    Bujok, Petr
    ACTA POLYTECHNICA HUNGARICA, 2017, 14 (05) : 163 - 180
  • [36] Multi-population Differential Evolution with Adaptive Parameter Control for Global Optimization
    Yu, Wei-jie
    Zhang, Jun
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1093 - 1098
  • [37] Self-adaptive differential evolution algorithm based on population state information
    Mai W.
    Liu W.
    Zhong J.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (06): : 34 - 46
  • [38] An Adaptive Differential Evolution Algorithm
    Noman, Nasimul
    Bollegala, Danushka
    Iba, Hitoshi
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2229 - 2236
  • [39] Adaptive Inflationary Differential Evolution
    Minisci, Edmondo
    Vasile, Massimiliano
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1792 - 1799
  • [40] Adaptive Distributed Differential Evolution
    Zhan, Zhi-Hui
    Wang, Zi-Jia
    Jin, Hu
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (11) : 4633 - 4647