Recursive identification method for a class of Hammerstein-Wiener systems

被引:0
|
作者
Yu, Feng [1 ]
Mao, Zhi-Zhong [1 ]
Jia, Ming-Xing [1 ]
Yuan, Ping [1 ]
Yang, Fei-Sheng [2 ]
机构
[1] School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
[2] School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
来源
关键词
Parameter estimation;
D O I
10.3724/SP.J.1004.2014.00327
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A recursive algorithm is presented to identify the Hammerstein-Wiener system with process noise. Based on parameterizing the nonlinear parts of system using polynomial functions strictly, the optimal recursive update formulas are derived in a sense that the expectation of the sum of square of parameter errors is minimized, which avoids the interference of noise. Uniform convergence conditions together with a coefficient setting method, which expands the convergence domain, are given by means of analyzing the algorithm deeply. Simulation results validate the advantage of this algorithm over the two-stage algorithm. Copyright © 2014 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:327 / 335
相关论文
共 50 条
  • [21] Frequency identification of Hammerstein-Wiener systems with backlash input nonlinearity
    Adil Brouri
    Laila Kadi
    Smail Slassi
    International Journal of Control, Automation and Systems, 2017, 15 : 2222 - 2232
  • [22] Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm
    Yu, Feng
    Mao, Zhizhong
    Yuan, Ping
    He, Dakuo
    Jia, Mingxing
    ISA TRANSACTIONS, 2017, 70 : 104 - 115
  • [23] A blind approach to the Hammerstein-Wiener model identification
    Bai, EW
    AUTOMATICA, 2002, 38 (06) : 967 - 979
  • [24] Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems
    Wang, Dongqing
    Ding, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3157 - 3164
  • [25] Identification method of the Hammerstein-Wiener model based on combined signal sources
    Li F.
    Luo Y.-S.
    Li B.
    Li S.-Q.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (11): : 2959 - 2967
  • [26] An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems
    Bai, EW
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 2756 - 2760
  • [27] Iterative Learning Control for Hammerstein-Wiener Systems
    Shen Dong
    Chen Han-Fu
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2201 - 2206
  • [28] Identification of Hammerstein-Wiener ARMAX Systems Using Extended Kalman Filter
    Mansouri, M.
    Tolouei, H.
    Shoorehdeli, M. Aliyari
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1110 - +
  • [29] Adaptive control of Hammerstein-Wiener nonlinear systems
    Zhang, Bi
    Hong, Hyokchan
    Mao, Zhizhong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (09) : 2032 - 2047
  • [30] Nonlinear predictive control for Hammerstein-Wiener systems
    Lawrynczuk, Maciej
    ISA TRANSACTIONS, 2015, 55 : 49 - 62