Enhancement and quantitative measurement of layer structures in optical coherence tomographic images

被引:0
|
作者
Department of Optoelectronic Engineering, Ji'nan University, Guangzhou 510632, China [1 ]
不详 [2 ]
机构
来源
Guangxue Xuebao | 2007年 / 3卷 / 515-520期
关键词
Biotechnology - Coherent light - Image enhancement - Imaging techniques - Refractive index;
D O I
暂无
中图分类号
学科分类号
摘要
The quantitative measurements of layer tissues, such as eyeground, in optical coherence tomographic (OCT) imaging depend on the extraction of layer structures. The second derivative item is introduced to control diffusion along coherence orientation in coherence enhancing diffusion algorithm (CED). The method is expected to preprocess the original optical coherence tomographic images to remove noise and speckle, enhance and protect the layer structure, and realize more accurate quantitative measurement for the significant layer structure of images. The coherence enhancing diffusion algorithm with a second derivative item is used in optical coherence tomographic images for different samples. The quantitative measurement for the thickness of significant layer structures in optical coherence tomographic images is done, by combining the location of the layer structure and sample refractivity information in the preprocessed images. Experimental results show that it is helpful to preprocess the optical coherence tomographic images with the modified algorithm for more accurate measurement of significant layer structures.
引用
收藏
相关论文
共 50 条
  • [21] Minification of fundus optical coherence tomographic images in gas-filled eye
    Yamashita, Toshifumi
    Terasaki, Hiroto
    Sakamoto, Taiji
    BMC OPHTHALMOLOGY, 2016, 16
  • [22] Enhancement of Optical Coherence Tomography Images of the Retina by Normalization and Fusion
    Rossant, Florence
    Amiel, Frederic
    Ea, Thomas
    Martinez, C. Maraver
    Paques, Michel
    RADIOENGINEERING, 2008, 17 (04) : 86 - 90
  • [23] Quantitative biometry of zebrafish retinal vasculature using optical coherence tomographic angiography
    Bozic, Ivan
    Li, Xiaoyue
    Tao, Yuankai
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (03): : 1244 - 1255
  • [24] Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties
    Rogowska, J.
    Patel, N.
    Plummer, S.
    Brezinski, M. E.
    BRITISH JOURNAL OF RADIOLOGY, 2006, 79 (945): : 707 - 711
  • [25] Quantitative Comparison Between Optical Coherence Tomography Angiography and Fundus Fluorescein Angiography Images: Effect of Vessel Enhancement
    Mochi, Thirumalesh
    Anegondi, Neha
    Girish, Molleti
    Jayadev, Chaitra
    Roy, Abhijit Sinha
    OPHTHALMIC SURGERY LASERS & IMAGING RETINA, 2018, 49 (11): : E175 - E181
  • [26] Optical coherence tomographic findings of dissociated optic nerve fiber layer appearance
    Mitamura, Y
    Suzuki, T
    Kinoshita, T
    Miyano, N
    Tashimo, A
    Ohtsuka, K
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2004, 137 (06) : 1155 - 1156
  • [27] Optical coherence tomographic findings of dissociated optic nerve fiber layer appearance
    Tsunekage, H
    Mitamura, Y
    Suzuki, T
    Miyano, N
    Tashimo, A
    Ohtsuka, K
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 : U755 - U755
  • [28] Epidermal layer recognition of optical coherence tomography skin images
    Yang, Chenming
    Li, Zhongliang
    Nan, Nan
    Bu, Yang
    Wang, Xiangzhao
    FOURTH INTERNATIONAL CONFERENCE ON PHOTONICS AND OPTICAL ENGINEERING, 2021, 11761
  • [29] Fast retinal layer identification for optical coherence tomography images
    Fabritius, Tapio
    Makita, Shuichi
    Miura, Masahiro
    Yasuno, Yoshiaki
    Myllyla, Risto
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XV, 2011, 7889
  • [30] Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images
    Sonoda, Shozo
    Sakamoto, Taiji
    Yamashita, Takehiro
    Kawano, Hiroki
    Yoshihara, Naoya
    Terasaki, Hiroto
    Shirasawa, Makoto
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)