Unraveling the impact of CNT on electrode expansion in silicon-based lithium-ion batteries

被引:0
|
作者
Kim, Yujin [1 ]
Kim, Moonjin [2 ]
Kim, Namhyung [3 ]
Cha, Hyungyeon [4 ]
Kim, Seokjin [5 ]
Sung, Jaekyung [5 ]
Cho, Jaephil [1 ,6 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Dept Energy Engn, 50 UNIST Gil, Ulsan 44919, South Korea
[2] LG Energy Solut Res Pk, Res Pk 188,Munji Ro, Seoul 305738, South Korea
[3] Pukyong Natl Univ, Dept Mat Syst Engn, 45 Yongso Ro, Busan 48513, South Korea
[4] Korea Inst Energy Res KIER, Ulsan Adv Energy Technol R&D Ctr, Ulsan, South Korea
[5] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, 501 Jinju Daero, Jinju 52828, South Korea
[6] SMLAB Co Ltd, 27 Gachengongdan 1 gil, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Silicon graphite composite anodes; Carbon nanotube; Electrode expansion; Solid-electrolyte interphase; Lithium-ion batteries; ANODES; PERFORMANCE; LITHIATION; NANOTUBES; PROGRESS; DESIGN;
D O I
10.1016/j.ensm.2024.103983
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-capacity silicon-based anode has been used in commercial lithium-ion batteries as a form of an addition to an existing graphite electrode for the realization of high energy density. However, under industrial conditions using high-density electrodes (>1.6 g cc(-1), low electrode porosity), the electrode expansion becomes more severe, which engenders the decrease in energy density and safety issues. Carbon nanotubes (CNTs) have emerged as promising additives due to their outstanding electrical conductivity and mechanical strength. Despite their potential, the chemo-mechanical and electrochemical roles of CNTs in silicon-based anodes are not fully understood. Herein, we identify the mechanisms by which CNTs enhance silicon-based anodes with constructive comparison of commercial conductive agents. Our results show that CNTs alleviate strain-induced interfacial reactions and control the growth of the solid electrolyte interphase (SEI) layer during cycling. CNTs provide mechanical reinforcement, reducing particle-level cracking and enhancing electron pathways, which lowers surface tension and decelerates crack propagation. This significantly diminishes electrode pulverization and swelling. As a result, we observe a stable cycling stability (Cycle life: 94.6% for 100 cycles) of silicon-graphite composite (SGC) in 1 Ah pouch-type full cell. Remarkably, the SGC blended with graphite showed better electrochemical performance at low temperature cycling, fast-charging cycling and rate capability compared to the conventional graphite.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Development of Laser Structured Silicon-based Anodes for Lithium-ion Batteries
    Zheng, Yijing
    Seifert, Hans Juergen
    Smyrek, Peter
    Pfleging, Wilhelm
    2018 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO) - CONFERENCE PROCEEDINGS, 2018, : 6 - 9
  • [22] Preparation methods of the silicon-based composite anode of lithium-ion batteries
    Song, Jun
    Chu, Xiaowan
    Zhang, Qi
    Chen, Yuhui
    Zhang, Xueqing
    Zhang, Guoshuai
    Zhang, Ruolin
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (07): : 3664 - 3678
  • [23] Highly Densified Fracture-Free Silicon-based Electrode for High Energy Lithium-Ion Batteries
    Sung, Jaekyung
    Kim, Namhyung
    Kim, Sang-Pil
    Lee, Taeyong
    Yoon, Moonsu
    Cho, Jaephil
    BATTERIES & SUPERCAPS, 2022, 5 (09)
  • [24] Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: "SiO"-Carbon Composite
    Yamada, Masayuki
    Ueda, Atsushi
    Matsumoto, Kazunobu
    Ohzuku, Tsutomu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (04) : A417 - A421
  • [25] Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries
    Tao, Wei
    Wang, Ping
    You, Ya
    Park, Kyusung
    Wang, Cao-Yu
    Li, Yong-Ke
    Cao, Fei-Fei
    Xin, Sen
    NANO RESEARCH, 2019, 12 (08) : 1739 - 1749
  • [26] Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries
    Luo, Wei
    Chen, Xinqi
    Xia, Yuan
    Chen, Miao
    Wang, Lianjun
    Wang, Qingqing
    Li, Wei
    Yang, Jianping
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [27] Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries
    Wei Tao
    Ping Wang
    Ya You
    Kyusung Park
    Cao-Yu Wang
    Yong-Ke Li
    Fei-Fei Cao
    Sen Xin
    Nano Research, 2019, 12 : 1739 - 1749
  • [28] Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries
    Son, Yeonguk
    Sung, Jaekyung
    Son, Yoonkook
    Cho, Jaephil
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 6 (01) : 77 - 83
  • [29] Research progress of functional binders for silicon-based anodes in lithium-ion batteries
    Zhou, Jianhua
    Chen, Xiaoyu
    Luo, Zongwu
    Jingxi Huagong/Fine Chemicals, 2022, 39 (07): : 1330 - 1338
  • [30] A Novel Biogenic Silicon-Based Anode Material for Lithium-Ion Batteries: A Review
    Seroka, Ntalane Sello
    Luo, Hongze
    Khotseng, Lindiwe
    ENERGIES, 2024, 17 (14)