Fast-charging heterogeneous ether-ester lithium metal batteries enabled by 12 μm-thick trilayer separator

被引:2
|
作者
Wei, Fengkun [1 ]
Wang, Shengxian [1 ]
Savilov, Serguei V.
Polu, Anji Reddy [2 ]
Singh, Pramod K. [3 ]
Hu, Ning [4 ,5 ]
Song, Shufeng [1 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] BVRIT HYDERABAD Coll Engn Women, Dept Phys, Mat Energy Devices Lab, Hyderabad 500090, Telangana, India
[3] Sharda Univ, Ctr Solar Cells & Renewable Energy, Sch Basic Sci & Res, Greater Noida 201306, Uttar Pradesh, India
[4] Hebei Univ Technol, Natl Engn Res Ctr Technol Innovat Method & Tool, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300401, Peoples R China
[5] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
关键词
Fast charging; Lithium metal batteries; Heterogeneous ether-ester LMB; Current density; Trilayer separator; ELECTROLYTES;
D O I
10.1016/j.memsci.2024.123590
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Lithium metal batteries (LMBs) equipped with high-voltage/capacity cathodes, notably LiNi0.8Co0.1Mn0.1O2 (NCM811), have surpassed specific energy levels of 350 Wh kg- 1, positioning them as potential benchmarks for future electric vehicles. However, fast charging of high-energy-density LMBs remains a significant challenge. In contrast to the commonly adopted approach of utilizing a homogeneous electrolyte for ions conduction within a cell, here we demonstrate the feasibility of a heterogeneous ether-ester LMB configuration, facilitated by a 12 mu m-thick trilayer separator with a porous/dense/porous structure, in conjunction with crosslinked ether and liquid carbonate ester electrolytes. As a demonstration, this porous-dense-porous trilayer separator confines dimethoxyethane (DME) electrolyte to the porous poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) layer, LiTFSI-LiBOB carbonate electrolyte to the porous polyethylene (PE) layer, and effectively impedes the shuttling of ether-ester electrolytes by the Li6.5La3Zr1.5Ta0.5O12 (LLZO)-rich dense interlayer. This configuration induces synergetic reductive and oxidative interfacial stability in the heterogeneous ether-ester LMB. Consequently, when using an NCM811 cathode with a practical loading of 18 mg cm- 2 in the heterogeneous etherester LMB, a capacity retention of 84 % after 100 cycles is achieved, along with a lean electrolyte of 9 mu l mAh-1, under an extremely high charge/discharge current densities of 3.6 mA cm- 2. The fast charging capability and prominent reversibility of the LMBs are attributed to the unique heterogeneous ether-ester LMB configuration, which holds great potential for advancing next-generation battery technology.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Fast-Charging Lithium-Sulfur Batteries Enabled via Lean Binder Content
    Kim, Soochan
    Kim, Dong Hyun
    Cho, Misuk
    Lee, Won Bo
    Lee, Youngkwan
    SMALL, 2020, 16 (47)
  • [12] Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries
    Zhou, Guodong
    Yu, Jing
    Liu, Jiapeng
    Lin, Xidong
    Wang, Yuhao
    Law, Ho Mei
    Ciucci, Francesco
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (02):
  • [13] Low-Temperature and Fast-Charging Lithium Metal Batteries Enabled by Solvent-Solvent Interaction Mediated Electrolyte
    Huang, Akang
    Ma, Zheng
    Kumar, Pushpendra
    Liang, Honghong
    Cai, Tao
    Zhao, Fei
    Cao, Zhen
    Cavallo, Luigi
    Li, Qian
    Ming, Jun
    NANO LETTERS, 2024, 24 (24) : 7499 - 7507
  • [14] Fast-Charging and Ultrahigh-Capacity Lithium Metal Anode Enabled by Surface Alloying
    Xu, Tianhui
    Gao, Peng
    Li, Peirong
    Xia, Kai
    Han, Na
    Deng, Jun
    Li, Yanguang
    Lu, Jun
    ADVANCED ENERGY MATERIALS, 2020, 10 (08)
  • [15] Long-Cycling, Fast-Charging Lithium Metal Batteries Enabled by Nickel-Carbon Composite Nanosheet Arrays Modified Lithium Metal Anodes
    Wang, Xin
    Xu, Lei
    Niu, Shuzhang
    Zhang, Qicheng
    Lian, Qing
    Xiang, Shengling
    Mao, Zongyu
    Han, Ye
    Huang, Yulan
    Li, Guanting
    Zuo, Ziteng
    Lan, Shenglian
    Shi, Run
    Liao, Chengzhu
    Li, Huili
    Amini, Abbas
    Wang, Ning
    Cheng, Chun
    SMALL, 2024,
  • [16] Mesoscale polymer regulation for fast-charging solid-state lithium metal batteries
    Ma, Yuetao
    Chen, Likun
    Li, Yuhang
    Li, Boyu
    An, Xufei
    Cheng, Xing
    Su, Hai
    Yang, Ke
    Xiao, Guanyou
    Zhao, Yang
    Han, Zhuo
    Guo, Shaoke
    Mi, Jinshuo
    Shi, Peiran
    Liu, Ming
    He, Yan-Bing
    Kang, Feiyu
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [17] Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
    Jianming Zheng
    Mark H. Engelhard
    Donghai Mei
    Shuhong Jiao
    Bryant J. Polzin
    Ji-Guang Zhang
    Wu Xu
    Nature Energy, 2
  • [18] Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
    Zheng, Jianming
    Engelhard, Mark H.
    Mei, Donghai
    Jiao, Shuhong
    Polzin, Bryant J.
    Zhang, Ji-Guang
    Xu, Wu
    NATURE ENERGY, 2017, 2 (03):
  • [19] Dual-Function Alloying Nitrate Additives Stabilize Fast-Charging Lithium Metal Batteries
    Paul-Orecchio, Austin G.
    Stockton, Lucas
    Barichello, Neel
    Petersen, Andrew
    Dolocan, Andrei
    Wang, Yixian
    Mitlin, David
    Mullins, C. Buddie
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 39341 - 39348
  • [20] Molecular design of electrolyte additives for high-voltage fast-charging lithium metal batteries
    Ou, Yu
    Hou, Wenhui
    Zhu, Da
    Li, Changjian
    Zhou, Pan
    Song, Xuan
    Xia, Yingchun
    Lu, Yang
    Yan, Shuaishuai
    Zhou, Hangyu
    Cao, Qingbin
    Zhou, Haiyu
    Liu, Hao
    Ma, Xiao
    Liu, Zhi
    Xu, Hong
    Liu, Kai
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (03) : 1464 - 1476