Durability properties of high-strength concrete with high-volume bottom ash as a substitute for cement and fine aggregate

被引:1
|
作者
Kampai, Chatcharit [1 ]
Chindasiriphan, Pattharaphon [2 ]
Jongvivatsakul, Pitcha [3 ,4 ]
Miao, Pengyong [5 ]
Tangchirapat, Weerachart [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Civil Engn, Construct Innovat & Future Infrastruct Res CIFIR, Bangkok 10140, Thailand
[2] Mahidol Univ, Fac Engn, Dept Civil & Environm Engn, Nakhon Pathom 73170, Thailand
[3] Chulalongkorn Univ, Fac Engn, Ctr Excellence Innovat Construct Mat, Dept Civil Engn, Bangkok 10330, Thailand
[4] Chulalongkorn Univ, Fac Engn, GreenTech Nexus Res Ctr Sustainable Construct Inno, Bangkok 10330, Thailand
[5] Changan Univ, Sch Civil Engn, Xian 710061, Peoples R China
关键词
Bottom ash; High-strength concrete; Durability; Corrosion; Chloride penetration; PARTIAL REPLACEMENT; CHLORIDE BINDING; FLY-ASH; WASTE; MICROSTRUCTURE; CORROSION; GLASS;
D O I
10.1016/j.conbuildmat.2024.139401
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research explores the impact of using high-volume processed bottom ash as a substitute for cement and sand in high-strength concrete production, with a particular focus on durability. The study specifically assesses the durability of concrete by evaluating its resistance to chloride penetration, corrosion, and permeability. Initially, the study investigated the use of ground bottom ash (GBA) as a low and high volume cement replacement by varying the GBA content to 35 %, 50 %, and 65 % by weight. In the second phase, the focus shifted to promoting the reutilization of bottom ash as a sand replacement. This involved incorporating specimens with 50 % GBA, identified as the optimal cement replacement ratio from the initial phase, and replacing 60 % of the sand with coarse bottom ash (CBA). The findings indicated that durability properties improved with an increase in GBA content up to 50 %, correlating with increased compressive strength. However, increasing GBA content to 65 % and combining 50 % GBA with 60 % CBA showed negligible effects on the durability of high-strength concrete, despite a reduction in strength. In summary, the optimal GBA amount for cement substitution in high-strength concrete was 50 % by weight, leading to the highest compressive strength of 84.5 MPa at 90 d, the least weight loss from steel corrosion, and the lowest permeability.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Strength Properties of High-Strength Concrete Containing Coal Bottom Ash as a Replacement of Aggregates
    Yang, In-Hwan
    Park, Jihun
    Dinh Le, Nhien
    Jung, Sanghwa
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [22] Strength and Durability Properties of High-Volume Fly Ash (HVFA) Binders: A Systematic Review
    Runganga, Desire
    Okonta, Felix
    Musonda, Innocent
    CIVILENG, 2024, 5 (02): : 435 - 460
  • [23] Mechanical and durability studies on high-volume fly-ash concrete
    Kumar, Manish
    Sinha, Anand Kumar
    Kujur, Jitu
    STRUCTURAL CONCRETE, 2020, 22 (S1) : E1036 - E1049
  • [24] Study on mechanical properties of concrete inclusion of high-volume coal bottom ash with the addition of fly ash
    Hasim, Abdul Muiz
    Shahid, Khairul Anuar
    Ariffin, Nur Farhayu
    Nasrudin, Nurul Natasha
    Zaimi, Muhammad Nor Syahrul
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 1355 - 1361
  • [25] Mechanical and Durability Properties of Medium Strength Self-Compacting Concrete with High-Volume Fly Ash and Blended Aggregates
    Nagaratnam, Brabha H.
    Faheem, Ahmed
    Rahman, Muhammad Ekhlasur
    Mannan, Mohammad Abdul
    Leblouba, Moussa
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2015, 59 (02): : 155 - 164
  • [26] Evaluation of in place strength of high-volume fly ash concrete
    Upadhyaya, Sushant
    Goulias, Dimitrios G.
    Obla, Karthik
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN CONCRETE TECHNOLOGY, 2007, : 755 - +
  • [27] Durability of High-Volume GGBS Concrete
    Li, Keliang
    Huang, Guohong
    Lin, Jun
    Tang, Xiusheng
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 261-263 : 338 - +
  • [28] Increasing Compressive Strength of Recycled Aggregate Concrete Using High Fineness Bottom Ash Blended Cement
    Brake, Nicholas A.
    Oruji, Soheil
    Haselbach, Liv
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2018: AIRFIELD AND HIGHWAY PAVEMENTS, 2018, : 401 - 410
  • [29] Flow and strength properties of masonry cement mortar containing high-volume fly ash
    Balakrishnan B.
    Ismail M.
    Khalid N.H.A.
    Journal of Solid Waste Technology and Management, 2019, 45 (02): : 131 - 138
  • [30] Problems review and suggestions for early high-strength, high-volume, low-lime fly ash concrete
    Deo, Shirish V.
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2016, 20 (05) : 611 - 624