SRRT: Exploring Search Region Regulation for Visual Object Tracking

被引:0
|
作者
Zhu, Jiawen [1 ]
Chen, Xin [1 ]
Zhang, Pengyu [1 ]
Wang, Xinying [2 ]
Wang, Dong [1 ]
Zhao, Wenda [1 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Search region regulation; visual object tracking;
D O I
10.1109/TCSVT.2024.3409898
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dominant trackers generate a fixed-size rectangular region based on the previous prediction or initial bounding box as the model input, i.e., search region. While this manner obtains promising tracking efficiency, a fixed-size search region lacks flexibility and is likely to fail in some cases, e.g., fast motion and distractor interference. Trackers tend to lose the target object due to the limited search region or experience interference from distractors due to the excessive search region. Drawing inspiration from the pattern humans track an object, we propose a novel tracking paradigm, called Search Region Regulation Tracking (SRRT) that applies a small eyereach when the target is captured and zooms out the search field when the target is about to be lost. SRRT applies a proposed search region regulator to estimate an optimal search region dynamically for each frame, by which the tracker can flexibly respond to transient changes in the location of object occurrences. To adapt the object's appearance variation during online tracking, we further propose a locking-state determined updating strategy for reference frame updating. The proposed SRRT is concise without bells and whistles, yet achieves evident improvements and competitive results with other state-of-the-art trackers on eight benchmarks. On the large-scale LaSOT benchmark, SRRT improves SiamRPN++ and TransT with absolute gains of 4.6% and 3.1% in terms of AUC. The code and models will be released.
引用
收藏
页码:10551 / 10563
页数:13
相关论文
共 50 条
  • [41] Visual Saliency Based Object Tracking
    Zhang, Geng
    Yuan, Zejian
    Zheng, Nanning
    Sheng, Xingdong
    Liu, Tie
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 193 - +
  • [42] Randomized Visual Phrases for Object Search
    Jiang, Yuning
    Meng, Jingjing
    Yuan, Junsong
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3100 - 3107
  • [43] Exploring visual and haptic object categorization
    Gaissert, N.
    Wallraven, C.
    Buelthoff, H. H.
    PERCEPTION, 2009, 38 : 159 - 160
  • [44] Salient Region Detection for Object Tracking
    Chan, Fan
    Jiang, Min
    Tang, Jinshan
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2012, 2012, 8406
  • [45] Object Detection by Admissible Region Search
    Chen, Xiaoming
    An, Senjian
    Liu, Wanquan
    Li, Wanqing
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 521 - +
  • [46] Efficient Region Search for Object Detection
    Vijayanarasimhan, Sudheendra
    Grauman, Kristen
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1401 - 1408
  • [47] Group Tracking: Exploring Mutual Relations for Multiple Object Tracking
    Duan, Genquan
    Ai, Haizhou
    Cao, Song
    Lao, Shihong
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 129 - 143
  • [48] AutoTrack: Interactive Visual Object Tracking for Efficient Object Annotations
    Keh, Jefferson
    Cruz, Meygen
    Rivera, Maverick
    Jose, John Anthony
    Sybingco, Edwin
    Dadios, Elmer
    Madria, Wira
    Miguel, Angelimarie
    2020 IEEE 12TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2020,
  • [49] Bayesian analysis on missing visual information and object complexity on visual search for object orientation and object identity
    Nguyen, Rachel T. T.
    Peterson, Matthew S.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2024, 86 (05) : 1560 - 1573
  • [50] Parallelization of the Honeybee Search Algorithm for Object Tracking
    Perez-Cham, Oscar E.
    Puente, Cesar
    Soubervielle-Montalvo, Carlos
    Olague, Gustavo
    Aguirre-Salado, Carlos A.
    Nunez-Varela, Alberto S.
    APPLIED SCIENCES-BASEL, 2020, 10 (06):