Normalized ground state solutions of Schrödinger-KdV system in R3

被引:0
|
作者
Gao, Qian [1 ]
Wang, Qun [1 ]
Chang, Xiaojun [2 ]
机构
[1] School of Mathematics and Statistics, Northeast Normal University, Changchun,130024, China
[2] School of Mathematics and Statistics & amp,Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun,130024, China
来源
关键词
D O I
10.1007/s00033-024-02330-8
中图分类号
学科分类号
摘要
42
引用
收藏
相关论文
共 50 条
  • [1] Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system
    Wenjing Bi
    Chunlei Tang
    [J]. Frontiers of Mathematics in China, 2020, 15 : 851 - 866
  • [2] Normalized Ground-State Solution for the Schrödinger–KdV System
    Fei-Fei Liang
    Xing-Ping Wu
    Chun-Lei Tang
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [3] Variational principle for Schrödinger-KdV system with the Mfractional derivatives
    Jiao, Man -Li
    He, Ji-Huan
    He, Chun -Hui
    Alsolami, Abdulrahman Ali
    [J]. JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, 2024, 55 (02): : 235 - 241
  • [4] Normalized Ground State Solutions for Critical Growth Schrödinger Equations
    Song Fan
    Gui-Dong Li
    [J]. Qualitative Theory of Dynamical Systems, 2024, 23
  • [5] Schrdinger-KdV方程的守恒律
    朱鹏飞
    孔令华
    王兰
    [J]. 江西师范大学学报(自然科学版), 2012, 36 (05) : 495 - 498
  • [6] Ground State Solution for Schrödinger–KdV System with Periodic Potential
    Fei-Fei Liang
    Xing-Ping Wu
    Chun-Lei Tang
    [J]. Qualitative Theory of Dynamical Systems, 2023, 22
  • [7] Well-posedness for the Schrödinger-KdV system on the half-line
    Compaan, E.
    Shin, W.
    Tzirakis, N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [8] Exact periodic wave solutions to the coupled Schrödinger-KdV equation and DS equations
    Yan-Ze Peng
    [J]. Pramana, 2004, 62 : 933 - 941
  • [9] Normalized solutions for a coupled Schrödinger system
    Thomas Bartsch
    Xuexiu Zhong
    Wenming Zou
    [J]. Mathematische Annalen, 2021, 380 : 1713 - 1740
  • [10] 耦合Schrdinger-KdV方程的行波解
    付华亮
    孙淑琴
    唐生强
    [J]. 桂林电子科技大学学报, 2013, 33 (06) : 497 - 501