耦合Schrdinger-KdV方程的行波解

被引:0
|
作者
付华亮 [1 ]
孙淑琴 [1 ]
唐生强 [1 ]
机构
[1] 桂林电子科技大学数学与计算科学学院
关键词
Schrdinger-KdV方程; 动力系统理论; 光滑孤立波; 光滑周期波;
D O I
10.16725/j.cnki.cn45-1351/tn.2013.06.001
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
为了得到Schrdinger-KdV方程的行波解,运用平面动力系统理论方法,对其动力学行为进行研究,证明了该方程光滑孤立波解和光滑周期波解的存在性,并在不同的参数条件下,给出了各类解存在的充分条件,求出了所有显式精确行波解。
引用
收藏
页码:497 / 501
页数:5
相关论文
共 9 条
  • [1] 构造非线性发展方程孤波解的混合指数方法
    徐桂琼
    李志斌
    [J]. 物理学报, 2002, (05) : 946 - 950
  • [2] 某些非线性发展方程的孤子解及其应用[D]. 陈贺灵.北方工业大学. 2008
  • [3] New exact solutions to the generalized KdV equation with generalized evolution[J] . YONGAN XIE,SHENGQIANG TANG,DAHE FENG.Pramana . 2012 (4)
  • [4] Bifurcations of travelling wave solutions for the generalized KP–BBM equation[J] . Shengqiang Tang,Xiaoliang Huang,Wentao Huang.Applied Mathematics and Computation . 2010 (10)
  • [5] Bifurcations of travelling wave solutions in the ( N +1)-dimensional sine–cosine-Gordon equations[J] . Shengqiang Tang,Chunhai Li,Kelei Zhang.Communications in Nonlinear Science and Numerical Simulation . 2009 (11)
  • [6] Bifurcations of travelling wave solutions for the K ( n , - n , 2 n ) equations[J] . Shengqiang Tang,Wentao Huang.Applied Mathematics and Computation . 2008 (1)
  • [7] Periodic wave solutions to a coupled KdV equations with variable coefficients
    Zhou, YB
    Wang, ML
    Wang, YM
    [J]. PHYSICS LETTERS A, 2003, 308 (01) : 31 - 36
  • [8] Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics[J] . Engui Fan.Chaos, Solitons and Fractals . 2002 (5)
  • [9] Applications of extended tanh method to ‘special’ types of nonlinear equations[J] . Engui Fan,Y.C Hon.Applied Mathematics and Computation . 2002 (2)