Synergistic effects in MoS2/Co3O4/Cu2O nanocomposites for superior solar cell and photodegradation efficiency

被引:1
|
作者
Karthigaimuthu, D. [1 ,2 ]
Bojarajan, Arjun Kumar [1 ,2 ]
Thangavel, Elangovan [3 ]
Maram, Pardha Saradhi [4 ]
Venkidusamy, Sasirekha [5 ]
Sangaraju, Sambasivam [2 ]
Mourad, Abdel-Hamid I. [1 ,2 ]
机构
[1] United Arab Emirates Univ, Coll Engn, Dept Mech & Aerosp Engn, POB 15551, Al Ain, U Arab Emirates
[2] United Arab Emirates Univ, Natl Water & Energy Ctr, POB 15551, Al Ain, U Arab Emirates
[3] Periyar Univ, Dept Energy Sci & Technol, Smart Energy Mat Res Lab, Salem 636011, Tamil Nadu, India
[4] Avinashilingam Univ, Dept Phys, Coimbatore 641043, Tamil Nadu, India
[5] SRM Univ AP, Sch Engn & Sci, Dept Chem, Amaravati 522240, Andhra Pradesh, India
关键词
MoS2/Co3O4/Cu2O nanocomposites; DSSC; S; -Scheme; Photocatalytic degradation; Organic dyes; Synergistic effects; ENHANCED PHOTOCATALYTIC ACTIVITY; RHODAMINE-B; P-TYPE; HETEROJUNCTION PHOTOCATALYST; TERNARY NANOCOMPOSITE; EVOLUTION REACTION; MOS2; NANOSHEETS; METHYLENE-BLUE; QUANTUM-DOT; DEGRADATION;
D O I
10.1016/j.jallcom.2024.177672
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we synthesized a Cu2O and Co3O4 incorporation with MoS2 to produce MoS2/Co3O4/Cu2O nano- composites by facile sonication assisted hydrothermal methods. The phase structure and elemental composition of MoS2/Co3O4/Cu2O nanocomposites were investigated using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) morphology studies confirm that MoS2/Co3O4 nanostructure self-assembles in a mixed nanosheet configuration after the introduction of Cu2O. The synthesized samples were used as new types of Pt-free counter electrodes (CE) for DSSCs. Among all, the DSSCs based on the MoS2/Co3O4/Cu2O CE yields a maximum power conversion efficiency of 3.68 % (Jsc= 8.2 mA cm-2, V oc = 0.71 mV and FF = 0.629 %) under the standard AM 1.5 G illumination, which is 2.5 times higher than that of pure MoS2. To assess the photocatalytic activity, prepared samples were used to suppress methylene blue (MB) and rhodamine B (RhB) dye under UV-visible light irradiation. The MoS2/Co3O4/Cu2O nanocomposites had the highest photocatalytic degradation efficiency of all the samples. It increased degradation efficiency from 43 % to 91 % for MB dye after 100 minutes, and from 47 % to 92 % for RhB dye after 90 minutes. Scavengers test analysis proved that the superoxide radical (center dot O2-) play a major role in the MoS2/Co3O4/Cu2O photocatalytic system. After four consecutive photocatalytic cycles, the crystal structure and surface morphology of the MoS2/Co3O4/Cu2O nanocomposites used in the 4th cycle were more stable, and this was confirmed by SEM, EDAX and XRD studies. The broader significance of these findings provides a straightforward approach for synthesizing a low-cost and high-efficiency MoS2/Co3O4/Cu2O nano- composite for CE in DSSC photovoltaic cells and facilitates organic pollutant removal through photocatalytic applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films
    Zang, Zhigang
    APPLIED PHYSICS LETTERS, 2018, 112 (04)
  • [42] Thin film Cu2O for solar cell applications
    Bergum, Kristin
    Riise, Heine N.
    Gorantla, Sandeep M.
    Monakhov, Edouard
    Svensson, Bengt G.
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2770 - 2773
  • [43] Effects of Cu2O thickness on the photoelectrochemical properties of Cu2O/WO3 heterostructure
    Fu, Yajun
    Yang, Jingxin
    Wang, Jin
    Cao, Linhong
    VACUUM, 2023, 207
  • [44] Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications
    Nishi, Yuki
    Miyata, Toshihiro
    Minami, Tadatsugu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 : 405 - 410
  • [45] Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia
    Mukundan, Arvind
    Feng, Shih-Wei
    Weng, Yu-Hsin
    Tsao, Yu-Ming
    Artemkina, Sofya B.
    Fedorov, Vladimir E.
    Lin, Yen-Sheng
    Huang, Yu-Cheng
    Wang, Hsiang-Chen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [46] MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors
    Liang, Dewei
    Tian, Zhenfei
    Liu, Jun
    Ye, Yixing
    Wu, Shouliang
    Cai, Yunyu
    Liang, Changhao
    ELECTROCHIMICA ACTA, 2015, 182 : 376 - 382
  • [47] The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction
    Sun, Xiao
    Huo, Jia
    Yang, Yide
    Xu, Lei
    Wang, Shuangyin
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (06) : 1136 - 1139
  • [48] Photocatalytic Degradation of Methyl Orange Dyes Using Green Synthesized MoS2/Co3O4 Nanohybrids
    Tien, Tsung-Mo
    Chen, Chao-Hsiang
    Huang, Chen-Tang
    Chen, Edward L.
    CATALYSTS, 2022, 12 (11)
  • [49] Co3O4 Nanocube-Templated CoS2 and CoS2/MoS2 Heterostructures for Multifunctional Electrocatalysis
    Mondal, Ayan
    Inta, Harish Reddy
    Roy, Avishek
    Mahato, Ashok Kumar
    Mahalingam, Venkataramanan
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 12040 - 12049
  • [50] The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction
    Xiao Sun
    Jia Huo
    Yide Yang
    Lei Xu
    Shuangyin Wang
    Journal of Energy Chemistry , 2017, (06) : 1136 - 1139