Time-lagged relation graph neural network for multivariate time series forecasting

被引:0
|
作者
Feng, Xing [1 ]
Li, Hongru [1 ]
Yang, Yinghua [1 ]
机构
[1] College of Information Sciences and Engineering, Northeastern University, Shenyang,110819, China
关键词
D O I
10.1016/j.engappai.2024.109530
中图分类号
学科分类号
摘要
Recently, Graph Neural Network-based approaches (GNNs) have been widely studied in Multivariate Time Series (MTS) prediction, which could extract information from the closely related variables for prediction. The variables contained in MTS data are lagged correlated, and the future trends of the lagging variables are guided by the leading variables. However, as the existing approaches only focus on delay-free relations, they cannot utilize the guidance information in leading variables to achieve accurate prediction. To address this issue, we propose a novel frame called the Time-Lagged Relation Graph Neural Network (TLGNN) including two key components: the time-lagged relation graph and the time-lagged relation graph learning. The time-lagged relation graph could explicitly model the time-delay relations among MTS variables by connecting variable nodes at lag intervals. The graph learning module could adaptively extract the time-delay relations among MTS variables. Based on the novel designed graph structure, the TLGNN could extract the guidance information from previous values of leading variables to generate more efficient feature representations for prediction. In experiments, the prediction accuracy is significantly improved due to the full exploration of the time-delay relations. Compared with existing methods, the TLGNN achieves the best results in both the single-step prediction and the multi-step prediction tasks. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
    Guan, Siwei
    Zhao, Binjie
    Dong, Zhekang
    Gao, Mingyu
    He, Zhiwei
    [J]. ENTROPY, 2022, 24 (06)
  • [32] Financial time series forecasting with multi-modality graph neural network
    Cheng, Dawei
    Yang, Fangzhou
    Xiang, Sheng
    Liu, Jin
    [J]. PATTERN RECOGNITION, 2022, 121
  • [33] Forecasting financial multivariate time series with neural networks
    Ankenbrand, T
    Tomassini, M
    [J]. 1ST INTERNATIONAL SYMPOSIUM ON NEURO-FUZZY SYSTEMS - AT'96, CONFERENCE REPORT, 1996, : 95 - 101
  • [34] Dynamic graph structure learning for multivariate time series forecasting
    Li, Zhuo Lin
    Zhang, Gao Wei
    Yu, Jie
    Xu, Ling Yu
    [J]. PATTERN RECOGNITION, 2023, 138
  • [35] Hierarchical Joint Graph Learning and Multivariate Time Series Forecasting
    Kim, Juhyeon
    Lee, Hyungeun
    Yu, Seungwon
    Hwang, Ung
    Jung, Wooyeol
    Yoon, Kijung
    [J]. IEEE ACCESS, 2023, 11 : 118386 - 118394
  • [36] Analysis on time-lagged gene clusters in time series gene expression data
    Zeng, Tao
    Liu, Juan
    [J]. CIS: 2007 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PROCEEDINGS, 2007, : 181 - +
  • [37] Spatiotemporal graph neural network for multivariate multi-step ahead time-series forecasting of sea temperature
    Kim, Jinah
    Kim, Taekyung
    Ryu, Joon-Gyu
    Kim, Jaeil
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [38] Deep Coupling Network for Multivariate Time Series Forecasting
    Yi, Kun
    Zhang, Qi
    He, Hui
    Shi, Kaize
    Hu, Liang
    An, Ning
    Niu, Zhendong
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [39] A deep multivariate time series multistep forecasting network
    Yin, Chenrui
    Dai, Qun
    [J]. APPLIED INTELLIGENCE, 2022, 52 (08) : 8956 - 8974
  • [40] A deep multivariate time series multistep forecasting network
    Chenrui Yin
    Qun Dai
    [J]. Applied Intelligence, 2022, 52 : 8956 - 8974