Exploring the potential of MXene nanohybrids as high-performance anode materials for lithium-ion batteries

被引:2
|
作者
Bandaru, Narendra [1 ]
Reddy, Ch. Venkata [2 ]
Vallabhudasu, Kalyani [3 ]
Vijayalakshmi, Mule [2 ]
Reddy, Kakarla Raghava [4 ]
Cheolho, Bai [2 ]
Shim, Jaesool [2 ]
Aminabhavi, Tejraj M. [5 ,6 ]
机构
[1] Aarhus Univ, Dept Elect & Comp Engn, DK-8200 Aarhus, Denmark
[2] Yeungnam Univ, Sch Engn, Gyongsan 712749, South Korea
[3] Natl Inst Pharmaceut Educ & Res NIPER, Dept Pharmaceut Anal, Hyderabad, Telangana, India
[4] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[5] KLE Technol Univ, Ctr Energy & Environm, Sch Adv Sci, Hubballi 580031, Karnataka, India
[6] Korea Univ, Seoul, South Korea
关键词
MXenes; Heterostructured nanohybrids; Electrode materials; Electrochemical properties; Lithium-ion batteries; Energy storage; TITANIUM CARBIDE MXENE; LI-ION; FACILE SYNTHESIS; TI2CTX MXENE; TI3C2TX; CAPACITY; COMPOSITE; ELECTRODES; GRAPHENE; LAYER;
D O I
10.1016/j.cej.2024.157317
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-ion batteries (LIBs) are an integral part of modern life, powering diverse applications from transportable devices to electric vehicles. Efficacy of LIBs depends on the performance of their components with anode material playing the pivotal role. Traditional graphite anodes have limitations in capacity and rate capability. This review comprehensively discusses utilization of MXene-based composites as anode materials in LIBs. MXene composites exhibit versatile lithium storage mechanisms, involving intercalation and/or conversion reactions. Pure MXenes offer advantages of high capacity and cycling stability having challenges due to limited conductivity and mechanical fragility, restricting their practical utility, thereby affecting their performance in solid-state polymer electrolytes (SPEs). MXene composites overcome unsystematic dispersal and accumulation issues of pure MXene. MXenes in composite form could increase LIBs performance by overcoming limitations of pure MXenes, enabling breakthroughs in energy storage. The review covers different MXene composites viz., MXene/graphene, MXene/ silicon, MXene/tin, MXene/carbon, MXene/metal oxide, and MXene/conducting polymer providing a holistic overview. Their performance, cycling stability, and rate capability are discussed to cover challenges and future prospects.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Engineering High-Performance SiOx Anode Materials with a Titanium Oxynitride Coating for Lithium-Ion Batteries
    Lai, Guoyong
    Wei, Xiujuan
    Zhou, Binbin
    Huang, Xiuhuan
    Tang, Weiting
    Wu, Shuxing
    Lin, Zhan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (44) : 49830 - 49838
  • [32] Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries
    Li, Guangda
    Xu, Liqiang
    Hao, Qin
    Wang, Meng
    Qian, Yitai
    RSC ADVANCES, 2012, 2 (01): : 284 - 291
  • [33] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Qin, Yanliang
    Wang, Bowen
    Jiang, Sipeng
    Jiang, Qingsong
    Huang, Chenghao
    Chen, Hai Chao
    IONICS, 2020, 26 (07) : 3315 - 3323
  • [34] Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries
    Yanliang Qin
    Bowen Wang
    Sipeng Jiang
    Qingsong Jiang
    Chenghao Huang
    Hai Chao Chen
    Ionics, 2020, 26 : 3315 - 3323
  • [35] Ionothermal Synthesis of Cobalt Vanadate Nanoparticles As High-Performance Anode Materials for Lithium-Ion Batteries
    Yu Zhao
    Ruxin Guan
    Zhenjiang Hou
    Hongwei Li
    Guixian Li
    Shiyou Li
    Liping Mao
    Journal of Electronic Materials, 2022, 51 : 3260 - 3275
  • [36] Porous CuO@C composite as high-performance anode materials for lithium-ion batteries
    Xu, Yang
    Chu, Kainian
    Li, Zhiqiang
    Xu, Shikai
    Yao, Ge
    Niu, Ping
    Zheng, Fangcai
    DALTON TRANSACTIONS, 2020, 49 (33) : 11597 - 11604
  • [37] F-doped zinc ferrite as high-performance anode materials for lithium-ion batteries
    Zhao, Qiong
    Peng, Puguang
    Zhu, Piao
    Yang, Gang
    Sun, Xiujuan
    Ding, Rui
    Gao, Ping
    Liu, Enhui
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (20) : 9612 - 9617
  • [38] Disordered materials for high-performance lithium-ion batteries: A review
    Wang, Zhaoyang
    Du, Zijuan
    Wang, Luoqing
    He, Guanjie
    Parkin, Ivan P.
    Zhang, Yanfei
    Yue, Yuanzheng
    NANO ENERGY, 2024, 121
  • [39] SnSbCux Alloy Composite Anode Materials for High Performance Lithium-Ion Batteries
    Ren, Xiangzhong
    Cai, Huihua
    Zhang, Wei
    Li, Yongliang
    Zhang, Peixin
    Deng, Libo
    Sun, Lingna
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (11): : 9508 - 9518
  • [40] Mesoporous silica nanoparticles as high performance anode materials for lithium-ion batteries
    Wang, Yourong
    Xie, Kai
    Guo, Xu
    Zhou, Wei
    Song, Guangsen
    Cheng, Siqing
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (10) : 8202 - 8205