A bifurcation and multiplicity result for a critical growth elliptic problem

被引:0
|
作者
El Manouni, Said [1 ]
Perera, Nishka [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Florida Inst Technol, Dept Math, 150 W Univ Blvd, Melbourne, FL 32901 USA
关键词
Critical growth p-Laplacian problems; Multiple nontrivial solutions; Variational methods; SIGN-CHANGING SOLUTIONS; BREZIS-NIRENBERG PROBLEM; NODAL SOLUTIONS; P-LAPLACIAN; POSITIVE SOLUTIONS; EXISTENCE RESULT; DIMENSIONS; BLOW-UP; EQUATIONS; NONEXISTENCE;
D O I
10.1016/j.aml.2024.109342
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Brezis-Nirenberg type critical growth p-Laplacian problem involving a parameter mu> 0 in a smooth bounded domain Omega. We prove the existence of multiple nontrivial solutions if either mu or the volume of Omega is sufficiently small. The proof is based on an abstract critical point theorem that only assumes a local (PS) condition. Our results are new even in the semilinear case p= 2 .
引用
收藏
页数:6
相关论文
共 50 条