A stochastic filtering algorithm using schrödinger equation

被引:0
|
作者
机构
[1] Wu, Hao-Han
[2] 1,Jin, Fu-Jiang
[3] Lai, Lian-You
[4] Wang, Liang
来源
Wu, Hao-Han | 1600年 / Science Press卷 / 40期
关键词
Adaptive filters - Quantum theory - Signal to noise ratio - Stochastic systems - Signal denoising - Gaussian distribution - Adaptive algorithms - Gaussian noise (electronic);
D O I
10.3724/SP.J.1004.2014.02370
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] The non-Markovian stochastic Schrödinger equation for open systems
    Department of Physics, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 6 (569-573):
  • [32] Ergodic results for the stochastic nonlinear Schrödinger equation with large damping
    Zdzislaw Brzeźniak
    Benedetta Ferrario
    Margherita Zanella
    Journal of Evolution Equations, 2023, 23
  • [33] Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method
    Rehman H.U.
    Akber R.
    Wazwaz A.-M.
    Alshehri H.M.
    Osman M.S.
    Optik, 2023, 289
  • [34] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [35] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [36] Investigation of Brownian motion in stochastic Schrödinger wave equation using the modified generalized Riccati equation mapping method
    Hamad, Ibrahim S.
    Ali, Karmina K.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [37] Attractor for nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation
    Boling Guo
    Guolian Wang
    Frontiers of Mathematics in China, 2008, 3
  • [38] Ergodicity for a weakly damped stochastic non-linear Schrödinger equation
    Arnaud Debussche
    Cyril Odasso
    Journal of Evolution Equations, 2005, 5 : 317 - 356
  • [39] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [40] Deviation Estimates for Random Walks and Stochastic Methods for Solving the Schrödinger Equation
    A. M. Chebotarev
    A. V. Polyakov
    Mathematical Notes, 2004, 76 : 564 - 577