Reconstruction of spherical flaw in rod by Born approximation

被引:0
|
作者
Wu, Bin [1 ]
Zheng, Gang-Feng [1 ]
He, Cun-Fu [1 ]
机构
[1] College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100022, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:704 / 708
相关论文
共 50 条
  • [21] RENORMALIZED BORN APPROXIMATION
    FORD, WF
    PHYSICAL REVIEW, 1967, 157 (05): : 1226 - &
  • [22] PHOTOIONIZATION AND THE BORN APPROXIMATION
    CORDES, JG
    CALKIN, MG
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1980, 13 (21) : 4111 - 4118
  • [23] AN IMPROVED BORN APPROXIMATION
    PARK, D
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1957, 70 (12): : 905 - 907
  • [24] AN EXTENDED BORN APPROXIMATION
    MURCH, RD
    INVERSE PROBLEMS, 1992, 8 (04) : L5 - L11
  • [25] Flaw Effects and Flaw Reorientation on Spent Fuel Rod Performance, a Simulation with Finite Element Analysis
    Tang, David T.
    Rigato, Antonio
    Einziger, Robert
    ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2015, VOL 7, 2015,
  • [26] Spherical and Rod SDS Micelles
    J Chem Educ, 1 (73):
  • [27] SPHERICAL AND ROD SDS MICELLES
    COELLO, A
    MEIJIDE, F
    MOUGAN, MA
    NUNEZ, ER
    TATO, JV
    JOURNAL OF CHEMICAL EDUCATION, 1995, 72 (01) : 73 - 75
  • [28] THE BORN APPROXIMATION IN THE THREE-DIMENSIONAL CALDERON PROBLEM II: NUMERICAL RECONSTRUCTION IN THE RADIAL CASE
    Barcelo, Juan A.
    Castro, Carlos
    Macia, Fabricio
    Merono, Cristobal J.
    INVERSE PROBLEMS AND IMAGING, 2023, : 183 - 207
  • [29] Approximation by spherical convolution
    Menegatto, VA
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (9-10) : 995 - 1012
  • [30] Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation
    Ntziachristos, V
    Weissleder, R
    OPTICS LETTERS, 2001, 26 (12) : 893 - 895