TimeGPT in load forecasting: A large time series model perspective

被引:1
|
作者
Liao, Wenlong [1 ]
Wang, Shouxiang [2 ]
Yang, Dechang [3 ]
Yang, Zhe [4 ]
Fang, Jiannong [1 ]
Rehtanz, Christian [5 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Wind Engn & Renewable Energy Lab, CH-1015 Lausanne, Switzerland
[2] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
[3] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[4] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[5] TU Dortmund Univ, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
关键词
Load forecasting; Large model; Time series; Smart grid; Artificial intelligence; Foundation model;
D O I
10.1016/j.apenergy.2024.124973
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the popular benchmarks for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, operators can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A wavelet transfer model for time series forecasting
    Fay, Damien
    Ringwood, John
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10): : 3691 - 3696
  • [42] A combination forecasting model to chaotic time series
    Liu, Bin-Sheng
    Pan, Qi-Shu
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 803 - +
  • [43] A deterministic forecasting model for fuzzy time series
    Li, ST
    Cheng, YC
    Proceedings of the IASTED International Conference on Computational Intelligence, 2005, : 25 - 30
  • [44] A Hybrid Fuzzy Time Series Model for Forecasting
    Hassan, Saima
    Jaafar, Jafreezal
    Samir, Brahim B.
    Jilani, Tahseen A.
    ENGINEERING LETTERS, 2012, 20 (01) : 88 - 93
  • [45] Model Selection Approach for Time Series Forecasting
    Mariia, Matskevichus
    Peter, Gladilin
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2019), 2019, : 119 - 123
  • [46] ARIMA Based Time Series Forecasting Model
    Xue, Dong-mei
    Hua, Zhi-qiang
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2016, 9 (02) : 93 - 98
  • [47] An Improved Forecasting Model of Fuzzy Time Series
    Wang Hongxu
    Guo Jianchun
    Feng Hao
    Jin Hailong
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING III, 2014, 678 : 64 - +
  • [48] SeriesNet:A Generative Time Series Forecasting Model
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 806 - 813
  • [49] On a model approach to forecasting of chaotic time series
    Kidachi, H
    PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (03): : 497 - 518
  • [50] A Fractal forecasting model for financial time series
    Richards, GR
    JOURNAL OF FORECASTING, 2004, 23 (08) : 587 - 602