Selective denoising autoencoder for classification of noisy gas mixtures using 2D transition metal dichalcogenides

被引:0
|
作者
Sohn, Inkyu [1 ]
Shin, Won-Yong [2 ]
Shin, Sujong [3 ]
Yoo, Jisang [1 ]
Shin, Dain [1 ]
Kim, Minji [1 ]
Choi, Sang-Il [3 ]
Chung, Seung min [1 ]
Kim, Hyungjun [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[2] Yonsei Univ, Sch Math & Comp Computat Sci & Engn, Seoul 03722, South Korea
[3] Dankook Univ, Dept Comp Engn, Yongin 16890, South Korea
基金
新加坡国家研究基金会;
关键词
QUALITY; TEMPERATURE; SENSOR;
D O I
10.1016/j.talanta.2024.127129
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electronic nose (E-nose) technology, which is composed of an array of chemical sensors and pattern recognition, has been widely utilized for the quantitative classification of gas mixtures. However, for the practical use of E-nose in real-industry, advanced algorithms are necessary to handle the noise in sensing data caused by various environmental variables. In order to achieve precise measurements even in real-world environments, it is necessary to denoise and classify noisy sensing data. To address these challenges, we have developed a novel deep learning approach, called selective denoising autoencoder (SDAE), which intelligently leverages both clean and noisy data gathered from real-world environments for mixed gas classification. Two-dimensional transition metal dichalcogenides (2D TMDCs) were used for the sensing channel. Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to characterize the TMDC sensing channel. Additionally, we conducted an analysis of the gas sensing properties towards NO2, NH3, and their mixtures (at ratios of 1:1, 1:2, and 2:1), and performed gas classification using our proposed SDAE model. The result achieved more than 95 % accuracy in all cases even in the noisy environment, which could be practically utilized in the industry.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] 2D transition metal dichalcogenides
    Sajedeh Manzeli
    Dmitry Ovchinnikov
    Diego Pasquier
    Oleg V. Yazyev
    Andras Kis
    Nature Reviews Materials, 2
  • [2] 2D transition metal dichalcogenides
    Manzeli, Sajedeh
    Ovchinnikov, Dmitry
    Pasquier, Diego
    Yazyev, Oleg V.
    Kis, Andras
    NATURE REVIEWS MATERIALS, 2017, 2 (08):
  • [3] 2D Transition Metal Dichalcogenides for Photocatalysis
    Yang, Ruijie
    Fan, Yingying
    Zhang, Yuefeng
    Mei, Liang
    Zhu, Rongshu
    Qin, Jiaqian
    Hu, Jinguang
    Chen, Zhangxing
    Hau Ng, Yun
    Voiry, Damien
    Li, Shuang
    Lu, Qingye
    Wang, Qian
    Yu, Jimmy C.
    Zeng, Zhiyuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (13)
  • [4] Longitudinal unzipping of 2D transition metal dichalcogenides
    Suchithra Padmajan Sasikala
    Yashpal Singh
    Li Bing
    Taeyoung Yun
    Sung Hwan Koo
    Yousung Jung
    Sang Ouk Kim
    Nature Communications, 11
  • [5] 2D Group IVB Transition Metal Dichalcogenides
    Yan, Chaoyi
    Gong, Chuanhui
    Wangyang, Peihua
    Chu, Junwei
    Hu, Kai
    Li, Chaobo
    Wang, Xuepeng
    Du, Xinchuan
    Zhai, Tianyou
    Li, Yanrong
    Xiong, Jie
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (39)
  • [6] 2D nanomaterials: graphene and transition metal dichalcogenides
    Zhang, Hua
    Chhowalla, Manish
    Liu, Zhongfan
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (09) : 3015 - 3017
  • [7] Nanophotonics with 2D transition metal dichalcogenides [Invited]
    Krasnok, Alex
    Lepeshov, Sergey
    Alu, Andrea
    OPTICS EXPRESS, 2018, 26 (12): : 15972 - 15994
  • [8] Substitutional doping in 2D transition metal dichalcogenides
    Loh, Leyi
    Zhang, Zhepeng
    Bosman, Michel
    Eda, Goki
    NANO RESEARCH, 2021, 14 (06) : 1668 - 1681
  • [9] Substitutional doping in 2D transition metal dichalcogenides
    Leyi Loh
    Zhepeng Zhang
    Michel Bosman
    Goki Eda
    Nano Research, 2021, 14 : 1668 - 1681
  • [10] Exciton Dynamics in 2D Transition Metal Dichalcogenides
    Li, Jingang
    Yang, Rundi
    Li, Runxuan
    Grigoropoulos, Costas P.
    ADVANCED OPTICAL MATERIALS, 2025,