Sandpiper optimization with hybrid deep learning model for blockchain-assisted intrusion detection in iot environment

被引:0
|
作者
Alkhonaini, Mimouna Abdullah [1 ]
Alohali, Manal Abdullah [2 ]
Aljebreen, Mohammed [3 ]
Eltahir, Majdy M. [4 ]
Alanazi, Meshari H. [5 ]
Yafoz, Ayman [6 ]
Alsini, Raed [6 ]
Khadidos, Alaa O. [6 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh, Saudi Arabia
[2] Princess Nourah bint Abdulrahman Univ, Dept Informat Syst Coll Comp & Informat Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] King Saud Univ, Community Coll, Dept Comp Sci, POB 28095, Riyadh 11437, Saudi Arabia
[4] King Khalid Univ, Appl Coll Mahayil, Dept Informat Syst, Abha, Saudi Arabia
[5] Northern Border Univ, Coll Sci, Dept Comp Sci, Ar Ar, Saudi Arabia
[6] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
关键词
Intrusion detection system; Security; Cyberattacks; Blockchain; Internet of Things; SYSTEM;
D O I
10.1016/j.aej.2024.10.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intrusion detection in the Internet of Things (IoTs) is a vital unit of IoT safety. IoT devices face diverse kinds of attacks, and intrusion detection systems (IDSs) play a significant role in detecting and responding to these threats. A typical IDS solution can be utilized from the IoT networks for monitoring traffic, device behaviour, and system logs for signs of intrusion or abnormal movement. Deep learning (DL) approaches are exposed to promise in enhancing the accuracy and effectiveness of IDS for IoT devices. Blockchain (BC) aided intrusion detection from IoT platforms provides many benefits, including better data integrity, transparency, and resistance to tampering. This paper projects a novel sandpiper optimizer with hybrid deep learning-based intrusion detection (SPOHDL-ID) from the BC-assisted IoT platform. The key contribution of the SPOHDL-ID model is to accomplish security via the intrusion detection and classification process from the IoT platform. In this case, the BC technology can be used for a secure data-sharing process. In the presented SPOHDL-ID technique, the selection of features from the network traffic data takes place using the SPO model. Besides, the SPOHDL-ID technique employs the HDL model for intrusion detection, which involves the design of a convolutional neural network with a stacked autoencoder (CNN-SAE) model. The beetle search optimizer algorithm (BSOA) method is used for the hyperparameter tuning procedure to increase the recognition outcomes of the CNN-SAE technique. An extensive simulation outcome is created to exhibit a better solution to the SPOHDL-ID method. The experimental validation of the SPOHDL-ID method portrayed a superior accuracy value of 99.59 % and 99.54 % over recent techniques under the ToN-IoT and CICIDS-2017 datasets.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 50 条
  • [41] Internet of Medical Things with a Blockchain-Assisted Smart Healthcare System Using Metaheuristics with a Deep Learning Model
    Albakri, Ashwag
    Alqahtani, Yahya Muhammed
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [42] Optimal Deep Learning Driven Intrusion Detection in SDN-Enabled IoT Environment
    Maray, Mohammed
    Alshahrani, Haya Mesfer
    Alissa, Khalid A.
    Alotaibi, Najm
    Gaddah, Abdulbaset
    Meree, Ali
    Othman, Mahmoud
    Hamza, Manar Ahmed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6587 - 6604
  • [43] Trustworthy Blockchain-Assisted Federated Learning: Decentralized Reputation Management and Performance Optimization
    Zhu, Weihao
    Shi, Long
    Li, Jun
    Cao, Bin
    Wei, Kang
    Wang, Zhe
    Huang, Tao
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 2890 - 2905
  • [44] Sea Turtle Foraging Optimization-Based Controller Placement with Blockchain-Assisted Intrusion Detection in Software-Defined Networks
    Alkhliwi, Sultan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 4735 - 4752
  • [45] Hybrid intrusion detection system for wireless IoT networks using deep learning algorithm
    Simon, Judy
    Kapileswar, N.
    Polasi, Phani Kumar
    Elaveini, M. Aarthi
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [46] DeepIoT.IDS: Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection
    Maseer, Ziadoon K.
    Yusof, Robiah
    Mostafa, Salama A.
    Bahaman, Nazrulazhar
    Musa, Omar
    Al-rimy, Bander Ali Saleh
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3945 - 3966
  • [47] RETRACTED: Lightweight blockchain-assisted intrusion detection system in energy efficient MANETs (Retracted Article)
    Sugumaran, V. R.
    Rajaram, A.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 4261 - 4276
  • [48] Hybrid Deep Learning-Based Intrusion Detection System for RPL IoT Networks
    Al Sawafi, Yahya
    Touzene, Abderezak
    Hedjam, Rachid
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)
  • [49] Ensuring data integrity in deep learning-assisted IoT-Cloud environments: Blockchain-assisted data edge verification with consensus algorithms
    Alruwaili, Fahad F.
    AIMS MATHEMATICS, 2024, 9 (04): : 8868 - 8884
  • [50] An Efficient Deep Learning Approach To IoT Intrusion Detection
    Cao, Jin
    Lin, Liwei
    Ma, Ruhui
    Guan, Haibing
    Tian, Mengke
    Wang, Yong
    COMPUTER JOURNAL, 2022, 65 (11): : 2870 - 2879