Milling Machine Fault Diagnosis Using Acoustic Emission and Hybrid Deep Learning with Feature Optimization

被引:0
|
作者
Umar, Muhammad [1 ]
Siddique, Muhammad Farooq [1 ]
Ullah, Niamat [1 ]
Kim, Jong-Myon [1 ,2 ]
机构
[1] Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan,44610, Korea, Republic of
[2] PD Technology Co., Ltd., Ulsan,44610, Korea, Republic of
来源
Applied Sciences (Switzerland) | 2024年 / 14卷 / 22期
基金
新加坡国家研究基金会;
关键词
Acoustic emission testing - Bearings (machine parts) - Fracture mechanics - Gear cutting machines - Multilayer neural networks - Shafts (machine components) - Wavelet transforms;
D O I
10.3390/app142210404
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A Transformer Fault Diagnosis Method Based on Parameters Optimization of Hybrid Kernel Extreme Learning Machine
    Li, Jifang
    Hai, Chen
    Feng, Zhen
    Li, Genxu
    IEEE ACCESS, 2021, 9 : 126891 - 126902
  • [22] OLTC Fault detection Based on Acoustic Emission and Supported by Machine Learning
    Cichon, Andrzej
    Wlodarz, Michal
    ENERGIES, 2024, 17 (01)
  • [23] Intelligent fault diagnosis of machinery based on hybrid deep learning with multi temporal correlation feature fusion
    Lv, Yaqiong
    Zhang, Xiaohu
    Cheng, Yiwei
    Lee, Carman K. M.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, : 3517 - 3536
  • [24] A Hybrid Fault Diagnosis Approach Using FEM Optimized Sensor Positioning and Machine Learning
    Jung, Sang Jin
    Shifat, Tanvir Alam
    Hur, Jang-Wook
    PROCESSES, 2022, 10 (10)
  • [25] Data-Driven Feature Extraction-Transformer: A Hybrid Fault Diagnosis Scheme Utilizing Acoustic Emission Signals
    Ma, Chenggong
    Gao, Jiuyang
    Wang, Zhenggang
    Liu, Ming
    Zou, Jing
    Zhao, Zhipeng
    Yan, Jingchao
    Guo, Junyu
    Processes, 2024, 12 (10)
  • [26] Feature optimization method for machine learning-based diagnosis of schizophrenia using magnetoencephalography
    Kim, Jieun
    Kim, Min-Young
    Kwon, Hyukchan
    Kim, Ji-Woong
    Im, Woo-Young
    Lee, Sang Min
    Kim, Kiwoong
    Kim, Seung Jun
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 338
  • [27] Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification
    Li, Ruoyu
    He, David
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (04) : 990 - 1001
  • [28] GEARBOX FAULT DIAGNOSIS OPTIMIZATION USING CONVENTIONAL NEURAL NETWORKS AND MACHINE LEARNING METHODS
    Zakaria M.
    Elias H.A.
    Mounira D.
    International Journal of Mechatronics and Applied Mechanics, 2022, 12 : 41 - 46
  • [29] Underwater Acoustic Target Feature Learning and Recognition using Hybrid Regularization Deep Belief Network
    Yang, Honghui
    Shen, Sheng
    Yao, Xiaohui
    Han, Zhen
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2017, 35 (02): : 220 - 225
  • [30] FAULT DIAGNOSIS OF RECIPROCATING COMPRESSOR VALVE USING ACOUSTIC EMISSION
    Wang, Y. F.
    Peng, X. Y.
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 6, PTS A AND B, 2013, : 101 - 106