Deterministic streaming algorithms for non-monotone submodular maximization

被引:0
|
作者
Sun, Xiaoming [1 ,2 ]
Zhang, Jialin [1 ,2 ]
Zhang, Shuo [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
submodular maximization; streaming algorithms; cardinality constraint; knapsack constraint;
D O I
10.1007/s11704-024-40266-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Submodular maximization is a significant area of interest in combinatorial optimization. It has various real-world applications. In recent years, streaming algorithms for submodular maximization have gained attention, allowing realtime processing of large data sets by examining each piece of data only once. However, most of the current state-of-the-art algorithms are only applicable to monotone submodular maximization. There are still significant gaps in the approximation ratios between monotone and non-monotone objective functions. In this paper, we propose a streaming algorithm framework for non-monotone submodular maximization and use this framework to design deterministic streaming algorithms for the d-knapsack constraint and the knapsack constraint. Our 1-pass streaming algorithm for the d-knapsack constraint has a 1/4(d+1)-& varepsilon; approximation ratio, using O((B) over tilde log (B) over tilde/& varepsilon;) memory, and O(log (B) over tilde & varepsilon;) query time per element, where (B) over tilde = min(n,b) is the maximum number of elements that the knapsack can store. As a special case of the d-knapsack constraint, we have the 1-pass streaming algorithm with a 1/8 - & varepsilon; approximation ratio to the knapsack constraint. To our knowledge, there is currently no streaming algorithm for this constraint when the objective function is non-monotone, even when d = 1. In addition, we propose a multi-pass streaming algorithm with 1/6 - & varepsilon; approximation, which stores O((B) over tilde )elements.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization
    Chien-Chung Huang
    Naonori Kakimura
    Theory of Computing Systems, 2022, 66 : 354 - 394
  • [32] Online non-monotone diminishing return submodular maximization in the bandit setting
    Ju, Jiachen
    Wang, Xiao
    Xu, Dachuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (03) : 619 - 649
  • [33] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis G.
    Fusco F.
    Lazos P.
    Leonardi S.
    Reiffenhäuser R.
    Journal of Artificial Intelligence Research, 2022, 74 : 661 - 690
  • [34] Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings
    Doskoc, Vanja
    Friedrich, Tobias
    Gobel, Andreas
    Neumann, Frank
    Neumann, Aneta
    Quinzan, Francesco
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 435 - 442
  • [35] Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity
    Fahrbach, Matthew
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [36] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis, Georgios
    Fusco, Federico
    Lazos, Philip
    Leonardi, Stefano
    Reiffenhauser, Rebecca
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 661 - 690
  • [37] Enhanced deterministic approximation algorithm for non-monotone submodular maximization under knapsack constraint with linear query complexity
    Pham, Canh V.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (01)
  • [38] Beyond pointwise submodularity: Non-monotone adaptive submodular maximization in linear time
    Tang, Shaojie
    THEORETICAL COMPUTER SCIENCE, 2021, 850 : 249 - 261
  • [39] Non-monotone submodular function maximization under k-system constraint
    Shi, Majun
    Yang, Zishen
    Kim, Donghyun
    Wang, Wei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 128 - 142
  • [40] Non-monotone DR-submodular Maximization over General Convex Sets
    Durr, Christoph
    Nguyen Kim Thang
    Srivastav, Abhinav
    Tible, Leo
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2148 - 2154