Diffractive hyperchromatic objective for chromatic confocal microscopy

被引:0
|
作者
Chen, Jiabin [1 ]
Li, Shaobai [1 ]
Kang, Wenjun [1 ]
Guan, Shuyuan [1 ]
Hong, Zhihan [1 ]
Liang, Rongguang [1 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2024年 / 15卷 / 12期
关键词
Bioimaging - Biological organs - Diffractive optical elements - Macroinvertebrates - Mammals;
D O I
10.1364/BOE.543322
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The limited focal shift of conventional achromatic objectives constrains the maximum imaging depth of chromatic confocal microscopes. To address this, we designed a hyperchromatic confocal microscope using diffractive optical elements, which was fabricated by single-point diamond turning (SPDT). This design takes advantage of the small Abbe number of diffractive optical elements to introduce a significant longitudinal chromatic shift. The resulting chromatic confocal microscope achieved a maximum imaging depth of 750 mu m and a lateral resolution of 0.78 mu m across a wavelength range of 600-810 nm. The system's imaging capabilities were demonstrated by capturing detailed images of biological samples, including cucumber seed cavities, pig kidney, and human forearm skin. These results confirmed the microscope's effectiveness in visualizing key cellular structures, underscoring its potential for high-resolution biological imaging. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:6834 / 6844
页数:11
相关论文
共 50 条
  • [21] Merging phase shifting interferometry with confocal chromatic microscopy
    STIL SA, 440 rue Jean de Guiramand, 13858 Aix en Provence, France
    Key Eng Mat, 2008, (287-290):
  • [22] Chromatic Swept-Source Corneal Confocal Microscopy
    Sperlich, Karsten
    Bohn, Sebastian
    Allgeier, Stephan
    Reichert, Klaus-Martin
    Stolz, Heinrich
    Guthoff, Rudolf F.
    Stachs, Oliver
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [23] Surface profile measurement using chromatic confocal microscopy
    Shi, KB
    Li, P
    Yin, SZ
    Liu, ZW
    TWO- AND THREE - DIMENSIONAL VISION SYSTEMS FOR INSPECTION, CONTROL, AND METROLOGY II, 2004, 5606 : 124 - 131
  • [24] Swept-Source-Based Chromatic Confocal Microscopy
    Jeong, Dawoon
    Park, Se Jin
    Jang, Hansol
    Kim, Hyunjoo
    Kim, Jaesun
    Kim, Chang-Seok
    SENSORS, 2020, 20 (24) : 1 - 10
  • [25] Towards Full-Field Chromatic Confocal Microscopy
    Boettcher, T.
    Claus, D.
    Osten, W.
    OPTICS, PHOTONICS AND LASERS, 2018, : 115 - 117
  • [26] REAL-TIME STEREOSCOPIC CONFOCAL REFLECTION MICROSCOPY USING OBJECTIVE LENSES WITH LINEAR LONGITUDINAL CHROMATIC DISPERSION
    MALY, M
    BOYDE, A
    SCANNING, 1994, 16 (03) : 187 - 192
  • [27] Design of Linear Dispersive Objective for Chromatic Confocal Displacement Sensor
    Ma Jing
    Qi Yuejing
    Lu Zengxiong
    Su Jiani
    Yang Guanghua
    Qi Wei
    Zhang Qingyang
    Chen Jinxin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (07):
  • [28] Design of adjustable dispersive objective lens for chromatic confocal system
    Cui C.-C.
    Li H.
    Yu Q.
    Ye R.-F.
    Yu, Qing (yuqing@hqu.edu.cn), 2017, Chinese Academy of Sciences (25): : 875 - 883
  • [29] Design of chromatic confocal quantitative inverse dispersive objective lens
    Yang, Jie
    Ma, Tao
    Huang, Tingting
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [30] Method of thickness measurement for transparent specimens with chromatic confocal microscopy
    Yu, Qing
    Zhang, Kun
    Cui, Changcai
    Zhou, Ruilan
    Cheng, Fang
    Ye, Ruifang
    Zhang, Yi
    APPLIED OPTICS, 2018, 57 (33) : 9722 - 9728