Kernel simplex growing algorithm for hyperspectral endmember extraction

被引:0
|
作者
机构
[1] Zhao, Liaoying
[2] Zheng, Junpeng
[3] Li, Xiaorun
[4] Wang, Lijiao
来源
Li, X. (lxr@zju.edu.cn) | 1600年 / SPIE卷 / 08期
关键词
In order to effectively extract endmembers for hyperspectral imagery where linear mixing model may not be appropriate due to multiple scattering effects; this paper extends the simplex growing algorithm (SGA) to its kernel version. A new simplex volume formula without dimension reduction is used in SGA to form a new simplex growing algorithm (NSGA). The original data are nonlinearly mapped into a high-dimensional space where the scatters can be ignored. To avoid determining complex nonlinear mapping; a kernel function is used to extend the NSGA to kernel NSGA (KNSGA). Experimental results of simulated and real data prove that the proposed KNSGA approach outperforms SGA and NSGA. © 2014 SPIE;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [31] A novel endmember extraction and discrimination algorithm for target detection in hyperspectral imagery
    He, Yuanlei
    Liu, Daizhi
    Yi, Shihua
    [J]. JOURNAL OF OPTICS, 2011, 13 (08)
  • [32] ANSGA-III: A Multiobjective Endmember Extraction Algorithm for Hyperspectral Images
    Cheng, Qian
    Du, Bo
    Zhang, Liangpei
    Liu, Rong
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (02) : 700 - 721
  • [33] NULL SPACE SPECTRAL PROJECTION ALGORITHM FOR HYPERSPECTRAL IMAGE ENDMEMBER EXTRACTION
    Luo Wen-Fei
    Zhong Liang
    Zhang Bing
    Gao Lian-Ru
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2010, 29 (04) : 307 - +
  • [34] Convex Polygon Maximization-Based Hyperspectral Endmember Extraction Algorithm
    Shah, Dharambhai
    Zaveri, Tanish
    Trivedi, Y. N.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (02) : 419 - 432
  • [35] Convex Polygon Maximization-Based Hyperspectral Endmember Extraction Algorithm
    Dharambhai Shah
    Tanish Zaveri
    Y. N. Trivedi
    [J]. Journal of the Indian Society of Remote Sensing, 2021, 49 : 419 - 432
  • [36] An improved N-FINDR algorithm for endmember extraction in hyperspectral imagery
    Zhang, Xue
    Tong, Xiao-hua
    Liu, Miao-long
    [J]. 2009 JOINT URBAN REMOTE SENSING EVENT, VOLS 1-3, 2009, : 1241 - 1245
  • [37] Null space spectral projection algorithm for hyperspectral image endmember extraction
    Luo, Wen-Fei
    Zhong, Liang
    Zhang, Bing
    Gao, Lian-Ru
    [J]. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2010, 29 (04): : 307 - 311
  • [38] Classification and Volume for Hyperspectral Endmember Extraction
    Yan Yang
    Hua Wenshen
    Cui Zihao
    Wu Xishan
    Liu Xun
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (09)
  • [39] Comparison of hyperspectral endmember extraction algorithms
    Wu, Jee-cheng
    Tsuei, Gwo-chyang
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [40] Multiobjective Endmember Extraction for Hyperspectral Image
    Liu, Rong
    Du, Bo
    Zhang, Liangpei
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1161 - 1164