Multi-Scale and Multi-Network Deep Feature Fusion for Discriminative Scene Classification of High-Resolution Remote Sensing Images

被引:1
|
作者
Yuan, Baohua [1 ,2 ]
Sehra, Sukhjit Singh [3 ]
Chiu, Bernard [2 ,3 ]
机构
[1] Changzhou Univ, Jiangsu Engn Res Ctr Digital Twinning Technol Key, Changzhou 213164, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Wilfrid Laurier Univ, Dept Phys & Comp Sci, Waterloo, ON N2L 3C5, Canada
关键词
convolutional neural network (CNN); feature fusion; discriminative canonical correlation analysis (DCCA); discriminant correlation analysis (DCA); scene classification; LAND-USE;
D O I
10.3390/rs16213961
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The advancement in satellite image sensors has enabled the acquisition of high-resolution remote sensing (HRRS) images. However, interpreting these images accurately and obtaining the computational power needed to do so is challenging due to the complexity involved. This manuscript proposed a multi-stream convolutional neural network (CNN) fusion framework that involves multi-scale and multi-CNN integration for HRRS image recognition. The pre-trained CNNs were used to learn and extract semantic features from multi-scale HRRS images. Feature extraction using pre-trained CNNs is more efficient than training a CNN from scratch or fine-tuning a CNN. Discriminative canonical correlation analysis (DCCA) was used to fuse deep features extracted across CNNs and image scales. DCCA reduced the dimension of the features extracted from CNNs while providing a discriminative representation by maximizing the within-class correlation and minimizing the between-class correlation. The proposed model has been evaluated on NWPU-RESISC45 and UC Merced datasets. The accuracy associated with DCCA was 10% and 6% higher than discriminant correlation analysis (DCA) in the NWPU-RESISC45 and UC Merced datasets. The advantage of DCCA was better demonstrated in the NWPU-RESISC45 dataset due to the incorporation of richer within-class variability in this dataset. While both DCA and DCCA minimize between-class correlation, only DCCA maximizes the within-class correlation and, therefore, attains better accuracy. The proposed framework achieved higher accuracy than all state-of-the-art frameworks involving unsupervised learning and pre-trained CNNs and 2-3% higher than the majority of fine-tuned CNNs. The proposed framework offers computational time advantages, requiring only 13 s for training in NWPU-RESISC45, compared to a day for fine-tuning the existing CNNs. Thus, the proposed framework achieves a favourable balance between efficiency and accuracy in HRRS image recognition.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A multi-scale semantic feature fusion method for remote sensing crop classification
    Huang, Xizhi
    Wang, Hong
    Li, Xiaobing
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [42] Multi-scale Remote Sensing Image Classification Based on Weighted Feature Fusion
    Cheng Yinzhu
    Liu Song
    Wang Nan
    Shi Yuetian
    Zhang Geng
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [43] Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion
    Zhang, Chengming
    Chen, Yan
    Yang, Xiaoxia
    Gao, Shuai
    Li, Feng
    Kong, Ailing
    Zu, Dawei
    Sun, Li
    REMOTE SENSING, 2020, 12 (02)
  • [44] An Algorithm of Boundary Refinement Based on the Multi-Scale Feature for High Resolution Remote Sensing Images
    Liu, Yuan
    He, Guojin
    2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 781 - +
  • [45] Multi-scale and multi-feature high resolution remote sensing image segmentation
    Zhao, Qiang
    Zhang, Sheng
    Huang, Shuling
    International Journal of Applied Mathematics and Statistics, 2013, 51 (22): : 343 - 350
  • [46] Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Jun
    Huang, Kaigen
    ELECTRONICS, 2025, 14 (01):
  • [47] A NOVEL DEEP FEATURE FUSION NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION
    Li, Yangyang
    Wang, Qi
    Liang, Xiaoxu
    Jiao, Licheng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5484 - 5487
  • [48] Building Multi-Feature Fusion Refined Network for Building Extraction from High-Resolution Remote Sensing Images
    Ran, Shuhao
    Gao, Xianjun
    Yang, Yuanwei
    Li, Shaohua
    Zhang, Guangbin
    Wang, Ping
    REMOTE SENSING, 2021, 13 (14)
  • [49] Multi-scale attention fusion network for semantic segmentation of remote sensing images
    Wen, Zhiqiang
    Huang, Hongxu
    Liu, Shuai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (24) : 7909 - 7926
  • [50] Fusion of shallow and deep features for classification of high-resolution remote sensing images
    Gao, Lang
    Tian, Tian
    Sun, Xiao
    Li, Hang
    MIPPR 2017: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2018, 10607