Deflection calculation of FRP-strengthened reinforced concrete flexural members

被引:8
|
作者
Smith S.T. [1 ]
Kim S.J. [1 ,2 ]
机构
[1] Department of Civil Engineering, University of Hong Kong
[2] Centre for Built Infrastructure Research, University of Technology Sydney
关键词
Beams; Deflection; Fibre-reinforced polymers; Reinforced concrete; Slabs; Strengthening;
D O I
10.1080/13287982.2010.11465057
中图分类号
学科分类号
摘要
Externally bonded fibre-reinforced polymer (FRP) composite plates can enhance the flexural strength, as well as stiffness to a limited degree, of reinforced concrete (RC) flexural members. Understanding the behaviour of these strengthened members at the serviceability and ultimate load ranges of response is of particular importance to engineers. The description of such behaviour is best described via plotting of the complete moment-curvature, as well as load-deflection responses from initial load to member failure. Based on the assumption of a tri-linear momentcurvature relationship, closed-form analytical solutions are presented in this paper for calculating the complete load-deflection response of FRP flexurally-strengthened one-way RC slabs and beams, which are simply-supported (three- and four-point bending), as well as cantilevered (free-end point load). The analytical predictions compare well with test results and the basis of a new "quad-linear" moment-curvature relationship is proposed that may better capture a so-called "pseudo-ductile" response occasionally observed in experiments. The infl uence of anchorage of the FRP strengthening for the prevention or delaying of debonding and a procedure for its inclusion in the analytical model is also discussed. Finally, the results of parametric studies are presented. © Institution of Engineers Australia, 2010.
引用
收藏
页码:75 / 86
页数:11
相关论文
共 50 条
  • [21] Simplified method for the calculation of long-term deflections in FRP-strengthened reinforced concrete beams
    Mari, Antonio R.
    Oller, Eva
    Bairan, Jesus M.
    Duarte, Noemi
    COMPOSITES PART B-ENGINEERING, 2013, 45 (01) : 1368 - 1376
  • [22] Calculation of Flexural Capacity of High-strength Reinforced Concrete Beams Strengthened with FRP
    Liang, Jiong-Feng
    Yang, Ze-Ping
    Qiu, Zhi-Ming
    FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8, 2011, 71-78 : 815 - 817
  • [23] Preliminary guidance for the design of FRP-strengthened concrete members exposed to fire
    Kodur, V. K. R.
    Bisby, L. A.
    Green, M. F.
    JOURNAL OF FIRE PROTECTION ENGINEERING, 2007, 17 (01) : 5 - 26
  • [24] Ultimate torsional resistance and failure modes of FRP-strengthened reinforced concrete members: A nonlinear design model
    Abdoli, Mahshid
    Mostofinejad, Davood
    Eftekhar, Mohamadreza
    ENGINEERING STRUCTURES, 2023, 283
  • [26] NUMERICAL INVESTIGATION OF FRP-STRENGTHENED REINFORCED CONCRETE BEAMS AT HIGH TEMPERATURES
    Mahdy, Osama E.
    Hamdy, Gehan
    Abdullah, Moustafa
    CIVIL ENGINEERING JOURNAL-STAVEBNI OBZOR, 2019, 28 (02): : 219 - 232
  • [27] Nonlinear finite element analysis of a FRP-strengthened reinforced concrete bridge
    Chansawat, Kasidit
    Yim, Solomon C. S.
    Miller, Thomas H.
    JOURNAL OF BRIDGE ENGINEERING, 2006, 11 (01) : 21 - 32
  • [28] Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms
    Khan, Majid
    Khan, Adil
    Khan, Asad Ullah
    Shakeel, Muhammad
    Khan, Khalid
    Alabduljabbar, Hisham
    Najeh, Taoufik
    Gamil, Yaser
    HELIYON, 2024, 10 (01)
  • [29] Study of the flexural behaviour of FRP-strengthened steel-concrete composite beams
    Stylianidis, P. M.
    Petrou, M. F.
    STRUCTURES, 2019, 22 : 124 - 138
  • [30] The damage effect on the dynamic characteristics of FRP-strengthened reinforced concrete structures
    De Maio, Umberto
    Gaetano, Daniele
    Greco, Fabrizio
    Lonetti, Paolo
    Pranno, Andrea
    COMPOSITE STRUCTURES, 2023, 309