Field validation of brown carbon absorption dependence on acidity and aerosol liquid water content

被引:0
|
作者
Thapliyal, Prerna [1 ,2 ]
Soni, Ashish [1 ,2 ,3 ]
Gupta, Tarun [1 ,2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Civil Engn, Kanpur 208016, India
[2] Indian Inst Technol Kanpur, Ctr Environm Sci & Engn CESE, APTL, Kanpur 208016, India
[3] Minist Earth Sci, Indian Inst Trop Meteorol, Pune 411008, Maharashtra, India
关键词
Brown Carbon; Absorption properties; Atmospheric acidity; Aerosol liquid water content; ISORROPIA; LIGHT-ABSORPTION; ORGANIC-CARBON; PH; NITROPHENOLS; SCATTERING; PARTICLES; CHEMISTRY; CHINA; URBAN; CAMS;
D O I
10.1016/j.atmosres.2024.107868
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Brown Carbon (BrC) is an organic component of aerosols with light-absorbing characteristics that have crucial consequences in atmospheric warming and the climate system, yet it carries significant uncertainty. This uncertainty is due to its non-static optical properties which provide a significant challenge in the measurement of the perturbation caused by them in the Earth radiation budget. The unpredictability in optical properties is because of the continuous formation of Secondary BrC and decay of existing BrC influenced by various physicochemical and meteorological factors in the ambient atmosphere. The dynamic behaviour of these chromophores can be impacted by the aerosol liquid water content (ALWC) and atmospheric acidity via influencing its atmospheric chemistry of formation and decay. The objective of this research is to investigate how the ALWC and acidity in terms of pH affect the BrC optical properties in the rarely examined Eastern part of India during extreme winters. Utilizing a thermal-optical carbon analyzer, the optical characteristics of BrC were estimated. The ISORROPIA II, thermodynamic model was employed to simulate ALWC and aerosol pH, yielding a mean pH value of 3.30 +/- 0.16 for the study duration. The study provides the first in-field evidence of a linear increase of absorption coefficient with increasing pH or decreasing aerosol acidity in the ambient atmosphere. A 39.6 Mm- 1 increase in absorption coefficient per unit increase in pH, shows that aerosol pH is one of the decisive elements influencing BrC chemistry. The results also showed the inverse relation of the absorption coefficient with ALWC. The findings indicate the sensitivity of BrC chemistry towards aerosol acidity and ALWC in the ambient atmosphere and its importance while evaluating BrC absorption.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] High light absorption and radiative forcing contributions of primary brown carbon and black carbon to urban aerosol
    Zhu, Chong-Shu
    Qu, Yao
    Zhou, Yue
    Huang, Hong
    Liu, Hui-Kun
    Yang, Lu
    Wang, Qi-Yuan
    Hansen, Anthony D. A.
    Cao, Jun-Ji
    GONDWANA RESEARCH, 2021, 90 : 159 - 164
  • [22] Constraining Light Absorption of Brown Carbon in China and Implications for Aerosol Direct Radiative Effect
    Xu, Lulu
    Lin, Guangxing
    Liu, Xiaohong
    Wu, Chenglai
    Wu, Yunfei
    Lou, Sijia
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (16)
  • [23] The absorption Angstrom exponent of black carbon with brown coatings: effects of aerosol microphysics and parameterization
    Zhang, Xiaolin
    Mao, Mao
    Yin, Yan
    Tang, Shihao
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (16) : 9701 - 9711
  • [24] Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties
    Huang, Ru-Jin
    Yang, Lu
    Cao, Junji
    Chen, Yang
    Chen, Qi
    Li, Yongjie
    Duan, Jing
    Zhu, Chongshu
    Dai, Wenting
    Wang, Kai
    Lin, Chunshui
    Ni, Haiyan
    Corbin, Joel C.
    Wu, Yunfei
    Zhang, Renjian
    Tie, Xuexi
    Hoffmann, Thorsten
    O'Dowd, Colin
    Dusek, Uli
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (12) : 6825 - 6833
  • [25] RADIATION FOG LIQUID WATER ACIDITY AT A FIELD STATION IN THE PO VALLEY
    FUZZI, S
    ORSI, G
    MARIOTTI, M
    JOURNAL OF AEROSOL SCIENCE, 1983, 14 (02) : 135 - 138
  • [26] Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon
    Lack, D. A.
    Cappa, C. D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (09) : 4207 - 4220
  • [27] Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals
    Schuster, GL
    Dubovik, O
    Holben, BN
    Clothiaux, EE
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) : 1 - 19
  • [28] pH dependence of brown-carbon optical properties in cloud water
    Hennigan, Christopher J.
    Mckee, Michael
    Pratap, Vikram
    Boegner, Bryanna
    Reno, Jasper
    Garcia, Lucia
    Mclaren, Madison
    Lance, Sara M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (22) : 14437 - 14449
  • [29] Bias in quantification of light absorption enhancement of black carbon aerosol coated with low-volatility brown carbon
    Shetty, Nishit
    Beeler, Payton
    Paik, Theodore
    Brechtel, Fred J.
    Chakrabarty, Rajan K.
    AEROSOL SCIENCE AND TECHNOLOGY, 2021, 55 (05) : 539 - 551
  • [30] Aerosol light absorption in a coastal city in Southeast China:Temporal variations and implications for brown carbon
    Yuqing Qiu
    Xin Wu
    Yanru Zhang
    Lingling Xu
    Youwei Hong
    Jinsheng Chen
    Xiaoqiu Chen
    Junjun Deng
    Journal of Environmental Sciences, 2019, (06) : 257 - 266