Estimating quantum entropy

被引:14
|
作者
Acharya J. [1 ,3 ]
Issa I. [1 ,2 ,3 ]
Shende N.V. [3 ,4 ]
Wagner A.B. [1 ,3 ]
机构
[1] School of Electrical and Computer Engineering, Cornell University, Ithaca, 14853, NY
[2] School of Electrical and Computer Engineering, American University of Beirut, Beirut
[3] Cornell University, Ithaca, 14853, NY
[4] Marvell Semiconductor, Santa Clara, 95054, CA
来源
Acharya, Jayadev (acharya@cornell.edu) | 1600年 / Institute of Electrical and Electronics Engineers Inc.卷 / 01期
关键词
Copy complexity; Entropy estimation; Quantum information; Renyi entropy; Von Neumann entropy; Weak Schur sampling;
D O I
10.1109/JSAIT.2020.3015235
中图分类号
学科分类号
摘要
The entropy of a quantum system is a measure of its randomness, and has applications in measuring quantum entanglement. We study the problem of estimating the von Neumann entropy, S(p), and Rényi entropy, Sα(p) of an unknown mixed quantum state p in d dimensions, given access to independent copies of p. We provide algorithms with copy complexity O(d2/α) for estimating Sα(p) for α < 1, and copy complexity O(d2) for estimating S(p), and Sα(p) for non-integral α > 1. These bounds are at least quadratic in d, which is the order dependence on the number of copies required for estimating the entire state p. For integral α > 1, on the other hand, we provide an algorithm for estimating Sα(p) with a sub-quadratic copy complexity of O(d2-2/α), and we show the optimality of the algorithms by providing a matching lower bound. © 2020 IEEE Journal on Selected Areas in Information Theory.All right reserved.
引用
收藏
页码:454 / 468
页数:14
相关论文
共 50 条
  • [1] ESTIMATING THE OUTPUT ENTROPY OF A TENSOR PRODUCT OF TWO QUANTUM CHANNELS
    Amosov, G. G.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 182 (03) : 397 - 406
  • [2] Estimating the output entropy of a tensor product of two quantum channels
    G. G. Amosov
    [J]. Theoretical and Mathematical Physics, 2015, 182 : 397 - 406
  • [3] Estimating Quantum Statistical Parton Distribution Functions in proton by maximum entropy method
    Sohaily, Sozha
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (30):
  • [4] Estimating entanglement entropy via variational quantum circuits with classical neural networks
    Lee, Sangyun
    Kwon, Hyukjoon
    Lee, Jae Sung
    [J]. PHYSICAL REVIEW E, 2024, 109 (04)
  • [5] Estimating Entropy and Entropy Norm on Data Streams
    Chakrabarti, Amit
    Do Ba, Khanh
    Muthukrishnan, S.
    [J]. INTERNET MATHEMATICS, 2006, 3 (01) : 63 - 78
  • [6] Estimating entropy and entropy norm on data streams
    Chakrabarti, A
    Do Ba, K
    Muthukrishnan, S
    [J]. STACS 2006, PROCEEDINGS, 2006, 3884 : 196 - 205
  • [7] On Quantum Entropy
    Geiger, Davi
    Kedem, Zvi M.
    [J]. ENTROPY, 2022, 24 (10)
  • [8] ON ESTIMATING ENTROPY OF RANDOM FIELDS
    TZANNES, NS
    SPENCER, RV
    KAPLAN, AJ
    [J]. INFORMATION AND CONTROL, 1970, 16 (01): : 1 - &
  • [9] Estimating the Entropy of Linguistic Distributions
    Arora, Aryaman
    Meister, Clara
    Cotterell, Ryan
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): (SHORT PAPERS), VOL 2, 2022, : 175 - 195
  • [10] Estimating the entropy of a signal with applications
    Bercher, JJ
    Vignat, C
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1705 - 1708