Fatigue mechanical properties and Kaiser effect characteristics of the saturated weakly cemented sandstone under different loading rate conditions

被引:2
|
作者
Zhao, Kui [2 ]
Liu, Youbing [1 ]
Yang, Daoxue [1 ]
Li, Bo [3 ]
Huang, Zhen [2 ]
Huang, Chongjie [4 ]
Shen, Botan [1 ]
Lan, Xiongdong [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Civil Engn & Surveying & Mapping Engn, Ganzhou 341000, Jiangxi, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Resources & Environm Engn, Ganzhou 341000, Jiangxi, Peoples R China
[3] Jiangxi Univ Sci & Technol, Coll Rare Earths, Ganzhou 341000, Jiangxi, Peoples R China
[4] China Ruilin Engn Technol Co Ltd, Nanchang 330031, Peoples R China
关键词
Weakly cemented sandstone; Cyclic loading; Loading rate effect; Kaiser effect; Crack classification; Water-rock interaction; ACOUSTIC-EMISSION; WATER; BEHAVIOR; CLASSIFICATION; DISSOLUTION; SPECIMENS; ROCKS;
D O I
10.1016/j.enggeo.2024.107732
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Weakly cemented sandstone (WCS) is a unique rock type widely distributed on the surface. Environmental factors such as groundwater and stress variations easily influence its fatigue mechanical properties and fracture characteristics. To design and evaluate the long-term stability of surrounding rock support in tunnel excavation and underground resource mining projects, investigating the fatigue mechanical properties and acoustic emission (AE) response characteristics of saturated WCS under different loading rates is of great practical and theoretical significance. This study employed experimental techniques such as X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and natural water absorption tests to investigate the mineral composition, pore size, and connectivity characteristics of WCS. The multi-level cyclic loading-unloading tests (MCLU) combined with the AE system were conducted on dry and saturated WCS specimens at different loading rates. The results reveal that the deformation modulus of these specimens initially increases and then decreases under cyclic loading conditions. Water significantly influences the fatigue strength and deformation resistance of sandstone. As the loading rate increases, the range of RA values broadens, accompanied by a marked increase in the number of AE signals with high RA values. Saturated sandstone specimens are more prone to developing macroscopic shear fracture surfaces. Water has a more substantial effect on the stress distribution ranges corresponding to the response of the Kaiser effect in WCS than loading rates. The capacity of the Kaiser effect to indicate the extent of rock damage is intricately linked to the progression of internal micro-cracks. When internal damage surpasses the critical value of the Kaiser effect memory damage, the accelerated propagation of shear cracks becomes pivotal in the internal damage of the sandstone. It seems that the presence of water within the interior of the rock may facilitate the dissolution of K-feldspar in WCS, which could result in the formation of kaolinite, which will be further transformed into illite. The hydration expansion of illite may further exacerbate the deterioration effect of the mechanical properties of WCS.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Damage mechanical properties of sandstone under different freeze-thaw conditions
    Li, Yong
    Gui, Huigao
    Chen, Jie
    Hu, Shuangjie
    Sun, Chuanmeng
    Caikuang yu Anquan Gongcheng Xuebao/Journal of Mining and Safety Engineering, 2024, 41 (04): : 813 - 823
  • [42] Cyclic Impact Damage and Water Saturation Effects on Mechanical Properties and Kaiser Effect of Red Sandstone Under Uniaxial Cyclic Loading and Unloading Compression
    Zhao, Kui
    Zhang, Lin
    Yang, Daoxue
    Jin, Jiefang
    Zeng, Peng
    Wang, Xing
    Ran, Shanhu
    Deng, Dongming
    ROCK MECHANICS AND ROCK ENGINEERING, 2024, 57 (01) : 181 - 195
  • [43] Cyclic Impact Damage and Water Saturation Effects on Mechanical Properties and Kaiser Effect of Red Sandstone Under Uniaxial Cyclic Loading and Unloading Compression
    Kui Zhao
    Lin Zhang
    Daoxue Yang
    Jiefang Jin
    Peng Zeng
    Xing Wang
    Shanhu Ran
    Dongming Deng
    Rock Mechanics and Rock Engineering, 2024, 57 (1) : 181 - 195
  • [44] Mechanical properties of deep sandstones under loading rate effect
    Zhang Jun-wen
    Ding Lu-jiang
    Song Zhi-xiang
    Fan Wen-bing
    Wang Shan-yong
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (06) : 1933 - 1944
  • [45] Experimental study on mechanical and acoustic emission characteristics of sedimentary sandstone under different loading rates
    Li, Nianchun
    Feng, Quanlin
    Yue, Weijia
    Sun, Shuhai
    Li, Yantao
    Li, Gaoyuan
    Shi, Wei
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [46] Progressive Failure Process of Sandstone Under Different Loading Conditions via Acoustic Emission Characteristics
    Lyu, Juanxia
    Fan, Caiyuan
    Li, Shijie
    Huang, Zhen
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2025,
  • [47] Analysis on mechanical properties and mesoscopic acoustic emission characteristics of prefabricated fracture cemented paste backfill under different loading rates
    Song, Xuepeng
    Yuan, Quan
    Wang, Shi
    Dong, Zilin
    Hao, Yuxin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (09) : 24687 - 24707
  • [48] Analysis on mechanical properties and mesoscopic acoustic emission characteristics of prefabricated fracture cemented paste backfill under different loading rates
    Xuepeng Song
    Quan Yuan
    Shi Wang
    Zilin Dong
    Yuxin Hao
    Environmental Science and Pollution Research, 2023, 30 : 24687 - 24707
  • [49] Uniaxial compression mechanical properties and deterioration mechanism of sandstone under different humidity conditions
    Wu, Qiu-hong
    Yang, Yi
    Zhang, Ke-xue
    Li, Yi-jing
    Chen, Wei
    Liu, Zhao-feng
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2023, 30 (12) : 4252 - 4267
  • [50] Mechanical behavior and fracture characteristics of high-temperature sandstone under true triaxial loading conditions
    Wang, Shuai
    Wang, Lianguo
    Ren, Bo
    Ding, Ke
    Jiang, Chongyang
    Guo, Jiaxing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 569 - 581