A contribution on the optimization strategies based on moving least squares approximation for sheet metal forming design

被引:0
|
作者
机构
[1] Ingarao, Giuseppe
[2] Di Lorenzo, Rosa
来源
Ingarao, G. (giuseppe.ingarao@unipa.it) | 1600年 / Springer London卷 / 64期
关键词
Metals;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:1 / 4
相关论文
共 50 条
  • [21] Sensitivity based optimization of sheet metal forming tools
    Sosnowski, W
    Marczewska, I
    Marczewski, A
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 124 (03) : 319 - 328
  • [22] Modeling of optimization strategies in the incremental CNC sheet metal forming process
    Bambach, M
    Hirt, G
    Ames, J
    MATERIALS PROCESSING AND DESIGN: MODELING, SIMULATION AND APPLICATIONS, PTS 1 AND 2, 2004, 712 : 1969 - 1974
  • [23] OPTIMIZATION STRATEGIES AND STATISTICAL ANALYSIS FOR SPRINGBACK COMPENSATION IN SHEET METAL FORMING
    Ferreira, E.
    Maia, A.
    Oliveira, M. C.
    Menezes, L. F.
    Andrade-Campos, A.
    COMPUTATIONAL PLASTICITY XIII: FUNDAMENTALS AND APPLICATIONS, 2015, : 759 - 770
  • [24] Direct approximation on spheres using generalized moving least squares
    Mirzaei, Davoud
    BIT NUMERICAL MATHEMATICS, 2017, 57 (04) : 1041 - 1063
  • [25] The use of moving least squares for a smooth approximation of sampled data
    Gresovnik, Igor
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2007, 53 (09): : 582 - 598
  • [26] Augmented moving least squares approximation using fundamental solutions
    Wang, Fajie
    Qu, Wenzhen
    Li, Xiaolin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 115 : 10 - 20
  • [27] Manifold Approximation by Moving Least-Squares Projection (MMLS)
    Barak Sober
    David Levin
    Constructive Approximation, 2020, 52 : 433 - 478
  • [28] Manifold Approximation by Moving Least-Squares Projection (MMLS)
    Sober, Barak
    Levin, David
    CONSTRUCTIVE APPROXIMATION, 2020, 52 (03) : 433 - 478
  • [29] Direct approximation on spheres using generalized moving least squares
    Davoud Mirzaei
    BIT Numerical Mathematics, 2017, 57 : 1041 - 1063
  • [30] Nonlinear assumed strain finite element method based on moving least squares approximation
    Noguchi, H.
    Tanaka, A.
    Computational Methods, Pts 1 and 2, 2006, : 589 - 596