On ℓ-MDS codes and a conjecture on infinite families of 1-MDS codes

被引:0
|
作者
Li Y. [1 ]
Zhu S. [1 ]
Martinez-Moro E. [2 ]
机构
[1] School of Mathematics, Hefei University of Technology, Hefei
基金
中国国家自然科学基金;
关键词
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">t</italic>-design; Bound on maximum length; Codes; Cryptography; Indexes; Linear codes; Mathematics; Propagation rule; Source coding; Vectors; Weight distribution; ℓ-MDS code;
D O I
10.1109/TIT.2024.3402745
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The class of &#x2113;-maximum distance separable (&#x2113;-MDS) codes is a generalization of maximum distance separable (MDS) codes that has attracted a lot of attention due to its applications in several areas such as secret sharing schemes, index coding problems, informed source coding problems and combinatorial <italic>t</italic>-designs. In this paper, for &#x2113; = 1, we completely solve a conjecture recently proposed by Heng <italic>et al</italic>: (Discrete Mathematics, 346(10): 113538, 2023) and obtain infinite families of 1-MDS codes with general dimensions holding 2-designs. These later codes are also proved to be optimal locally recoverable codes. For general positive integers &#x2113; and &#x2113;&#x2032;, we construct new &#x2113;-MDS codes from known &#x2113;&#x2032;-MDS codes via some classical propagation rules involving the extended, expurgated, and (u, u+v) constructions. Finally, we study some general results including characterization, weight distributions, and bounds on maximum lengths of &#x2113;-MDS codes, which generalize, simplify, or improve some known results in the literature. IEEE
引用
收藏
页码:1 / 1
相关论文
共 50 条
  • [1] The main conjecture for MDS codes
    Hirschfeld, JWP
    CRYPTOGRAPHY AND CODING: 5TH IMA CONFERENCE, 1995, 1025 : 44 - 52
  • [2] ON THE MAIN CONJECTURE ON GEOMETRIC MDS CODES
    MUNUERA, C
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) : 1573 - 1577
  • [3] Infinite Families of Near MDS Codes Holding t-Designs
    Ding, Cunsheng
    Tang, Chunming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5419 - 5428
  • [4] New infinite families of near MDS codes holding t-designs
    Heng, Ziling
    Wang, Xinran
    DISCRETE MATHEMATICS, 2023, 346 (10)
  • [5] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    IEEE ACCESS, 2021, 9 : 137970 - 137990
  • [6] Construction of MDS twisted Reed–Solomon codes and LCD MDS codes
    Hongwei Liu
    Shengwei Liu
    Designs, Codes and Cryptography, 2021, 89 : 2051 - 2065
  • [7] MDS Constacyclic Codes and MDS Symbol-Pair Constacyclic Codes
    Dinh, Hai Q.
    Nguyen, Bac T.
    Singh, Abhay Kumar
    Yamaka, Woraphon
    Nguyen, Bac T. (nguyentrongbac@duytan.edu.vn), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 137970 - 137990
  • [8] On the Classification of MDS Codes
    Kokkala, Janne I.
    Krotov, Denis S.
    Ostergard, Patric R. J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) : 6485 - 6492
  • [9] Some Families of Asymmetric Quantum MDS Codes Constructed from Constacyclic Codes
    Yuanyuan Huang
    Jianzhang Chen
    Chunhui Feng
    Riqing Chen
    International Journal of Theoretical Physics, 2018, 57 : 453 - 464
  • [10] ON MDS ELLIPTIC CODES
    MUNUERA, C
    DISCRETE MATHEMATICS, 1993, 117 (1-3) : 279 - 286