Less is more: A closer look at semantic-based few-shot learning

被引:0
|
作者
Zhou, Chunpeng [1 ]
Yu, Zhi [2 ]
Yuan, Xilu [1 ]
Zhou, Sheng [2 ]
Bu, Jiajun [1 ]
Wang, Haishuai [1 ,3 ]
机构
[1] Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems, College of Computer Science, Zhejiang University, Hangzhou,310000, China
[2] School of Software Technology, Zhejiang University, Ningbo,310027, China
[3] Shanghai Artificial Intelligence Laboratory, Shanghai,200125, China
基金
中国国家自然科学基金;
关键词
Adversarial machine learning - Contrastive Learning - Federated learning - Self-supervised learning;
D O I
10.1016/j.inffus.2024.102672
中图分类号
学科分类号
摘要
Few-shot Learning (FSL) aims to learn and distinguish new categories from a scant number of available samples, presenting a significant challenge in the realm of deep learning. Recent researchers have sought to leverage the additional semantic or linguistic information of scarce categories with a pre-trained language model to facilitate learning, thus partially alleviating the problem of insufficient supervision signals. Nonetheless, the full potential of the semantic information and pre-trained language model have been underestimated in the few-shot learning till now, resulting in limited performance enhancements. To address this, we propose a straightforward and efficacious framework for few-shot learning tasks, specifically designed to exploit the semantic information and language model. Specifically, we explicitly harness the zero-shot capability of the pre-trained language model with learnable prompts. And we directly add the visual feature with the textual feature for inference without the intricate designed fusion modules as in prior studies. Additionally, we apply the self-ensemble and distillation to further enhance performance. Extensive experiments conducted across four widely used few-shot datasets demonstrate that our simple framework achieves impressive results. Particularly noteworthy is its outstanding performance in the 1-shot learning task, surpassing the current state-of-the-art by an average of 3.3% in classification accuracy. Our code will be available at https://github.com/zhouchunpong/SimpleFewShot. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [31] Iris recognition based on few-shot learning
    Lei, Songze
    Dong, Baihua
    Li, Yonggang
    Xiao, Feng
    Tian, Feng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [32] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [33] Variational Few-Shot Learning
    Zhang, Jian
    Zhao, Chenglong
    Ni, Bingbing
    Xu, Minghao
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1685 - 1694
  • [34] Defensive Few-Shot Learning
    Li, Wenbin
    Wang, Lei
    Zhang, Xingxing
    Qi, Lei
    Huo, Jing
    Gao, Yang
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5649 - 5667
  • [35] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [36] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [37] Interventional Few-Shot Learning
    Yue, Zhongqi
    Zhang, Hanwang
    Sun, Qianru
    Hua, Xian-Sheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [38] Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] SIN: Semantic Inference Network for Few-Shot Streaming Label Learning
    Wang, Zhen
    Liu, Liu
    Duan, Yiqun
    Tao, Dacheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9952 - 9965
  • [40] Global-Local Interplay in Semantic Alignment for Few-Shot Learning
    Hao, Fusheng
    He, Fengxiang
    Cheng, Jun
    Tao, Dacheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4351 - 4363