DESRGAN: Detail-enhanced generative adversarial networks for small sample single image super-resolution

被引:0
|
作者
Ma, Congcong [1 ,3 ]
Mi, Jiaqi [2 ]
Gao, Wanlin [1 ,3 ]
Tao, Sha [1 ,3 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] Nankai Univ, Coll Artificial Intelligence, Tianjin 300350, Peoples R China
[3] China Agr Univ, Key Lab Agr Informatizat Standardizat, Minist Agr & Rural Affairs, Beijing 100083, Peoples R China
关键词
Generative adversarial networks; Small sample; Super-resolution; Artifacts; Edge details; Texture details; RECONSTRUCTION;
D O I
10.1016/j.neucom.2024.129121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image super-resolution involves reconstructing a blurry, low-resolution image with limited information into a clear, high-resolution image containing more detailed information. The images generated by super-resolution reconstruction can enhance the performance of downstream computer vision tasks, and hold wide application prospects in fields such as industrial fault detection, plant phenotype parameter extraction, medical imaging, and more. High-frequency components in images, such as edges and texture details, typically require more attention. However, when the training samples are limited, effectively recovering clear high-frequency details of images becomes highly challenging. Therefore, this paper proposes a single-image super-resolution method based on generative adversarial networks, named DESRGAN. Compared to existing methods, DESRGAN achieves better reconstruction of image details even with a limited number of training samples. DESRGAN introduces several key innovations: a shallow generator structure to address overfitting issues in small sample scenarios, a dual-stream feature extraction network with dilated convolutions to capture multi-scale contextual information and expand the receptive field, and an artifact loss designed to eliminate artifacts and preserve the true high-frequency details of the super-resolved images. Extensive ablation experiments and comparative studies with multiple state-of-the-art models are conducted on two small sample datasets, "Root" and "Leaves," as well as five publicly available datasets. The results demonstrate that the proposed DESRGAN achieves superior performance in small sample single image super-resolution tasks, with improvements of 1.39 dB in PSNR and 0.013 in SSIM. The generated high-resolution images exhibit clear texture and edge structures, presenting favorable subjective visual effects. Moreover, the model displays strong generalization capabilities.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Semantically accurate super-resolution Generative Adversarial Networks
    Frizza, Tristan
    Dansereau, Donald G.
    Seresht, Nagita Mehr
    Bewley, Michael
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [42] Improved face super-resolution generative adversarial networks
    Mengxue Wang
    Zhenxue Chen
    Q. M. Jonathan Wu
    Muwei Jian
    Machine Vision and Applications, 2020, 31
  • [43] Improved face super-resolution generative adversarial networks
    Wang, Mengxue
    Chen, Zhenxue
    Wu, Q. M. Jonathan
    Jian, Muwei
    MACHINE VISION AND APPLICATIONS, 2020, 31 (04)
  • [44] Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning
    Zhang, Xiaolu
    Song, Huihui
    Zhang, Kaihua
    Qiao, Jiaojiao
    Liu, Qingshan
    NEUROCOMPUTING, 2020, 398 : 531 - 538
  • [45] Single-image super-resolution reconstruction via generative adversarial network
    Ju, Chunwu
    Su, Xiuqin
    Yang, Haoyuan
    Ning, Hailong
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [46] Image Super-Resolution Reconstruction Algorithm Based on Improved Enhanced Generative Adversarial Network
    She, Xiangyang
    Yang, Qinghao
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 644 - 651
  • [47] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [48] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [49] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [50] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342