Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning

被引:4
|
作者
Lu, Xingchi [1 ]
Yao, Xuejian [1 ]
Jiang, Quansheng [1 ]
Shen, Yehu [1 ]
Xu, Fengyu [2 ]
Zhu, Qixin [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Mech Engn, Suzhou 215009, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
RUL prediction; Rolling bearing; Domain adaptation; Attention contrastive learning; Pseudo-label;
D O I
10.1016/j.compind.2024.104172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Performance degradation and remaining useful life (RUL) prediction are of great significance in improving the reliability of mechanical equipment. Existing cross-domain RUL prediction methods usually reduce data distribution discrepancy by domain adaptation, to overcome domain shift under cross-domain conditions. However, the fine-grained information between cross-domain degradation features and the specific characteristics of the target domain are often ignored, which limits the prediction performance. Aiming at these issues, a RUL prediction method based on dynamic hybrid domain adaptation (DHDA) and attention contrastive learning (A-CL) is proposed for the cross-domain rolling bearings. In the DHDA module, the conditional distribution alignment is achieved by the designed pseudo-label-guided domain adversarial network, and is assigned with a dynamic penalty term to dynamically adjust the conditional distribution when aligning the joint distribution, for improving the fine-grainedness of domain adaptation. The A-CL module aims to help the prediction model actively extract the degradation information of the target domain, to generate the degradation features that match the characteristics of the target domain, for improving the robustness of RUL prediction. Then, the proposed method is verified by the ablation and comparison experiments conducted on PHM2012 and XJTU-SY datasets. The results show that the proposed method performs high accuracy for cross-domain RUL prediction with good generalization performance under three different cross-domain scenarios.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Prediction of Remaining useful life of Rolling Bearing using Hybrid DCNN-BiGRU Model
    Eknath, Kondhalkar Ganesh
    Diwakar, G.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (03) : 997 - 1010
  • [32] Remaining useful life prediction of rolling element bearing based on hybrid drive of data-driven and dynamic model
    Ying, Jun
    Yang, Zhaojun
    Chen, Chuanhai
    Liu, Zhifeng
    Li, Shizheng
    Chen, Hu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022,
  • [33] Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions
    Han Cheng
    Xianguang Kong
    Qibin Wang
    Hongbo Ma
    Shengkang Yang
    Gaige Chen
    Journal of Intelligent Manufacturing, 2023, 34 : 587 - 613
  • [34] Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions
    Cheng, Han
    Kong, Xianguang
    Wang, Qibin
    Ma, Hongbo
    Yang, Shengkang
    Chen, Gaige
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (02) : 587 - 613
  • [35] Remaining Useful Life Prediction for Rolling Element Bearing Based on Ensemble Learning
    Zhang, Bin
    Zhang, Lijun
    Xu, Jinwu
    2013 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE (PHM), 2013, 33 : 157 - 162
  • [36] Cross-domain tool wear condition monitoring via residual attention hybrid adaptation network
    Huang, Zhiwen
    Li, Weidong
    Zhu, Jianmin
    Wang, Lihui
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 72 : 406 - 423
  • [37] Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing
    Dong, Shaojiang
    Xiao, Jiafeng
    Hu, Xiaolin
    Fang, Nengwei
    Liu, Lanhui
    Yao, Jinbao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [38] Self-supervised domain adaptation for machinery remaining useful life prediction
    Le Xuan, Quy
    Munderloh, Marco
    Ostermann, Joern
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [39] Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation
    Lyu, Yi
    Zhang, Qichen
    Wen, Zhenfei
    Chen, Aiguo
    MATHEMATICS, 2022, 10 (24)
  • [40] Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data
    Li, Xiang
    Zhang, Wei
    Li, Xu
    Hao, Hongshen
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (03) : 1903 - 1913