Multiple degree reduction of Wang-Ball curves by using dual basis polynomials

被引:0
|
作者
机构
[1] [1,Dong, Zhiyuan
[2] Zhang, Li
[3] 1,Tan, Jieqing
[4] Xu, Guangfan
来源
Zhang, L. (hgdzli@126.com) | 2013年 / Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong卷 / 10期
关键词
10;
D O I
10.12733/jics20101098
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Inversion, degree, reparametrization and implicitization of improperly parametrized planar curves using μ-basis
    Perez-Diaz, Sonia
    Shen, Li-Yong
    COMPUTER AIDED GEOMETRIC DESIGN, 2021, 84
  • [32] Multiple wavelet basis image denoising using Besov ball projections
    Choi, H
    Baraniuk, RG
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (09) : 717 - 720
  • [33] Constrained multi-degree reduction of Bezier surfaces using Jacobi polynomials
    Zhou, Lian
    Wang, Guo-Jin
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (03) : 259 - 270
  • [34] Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials
    Jansen, Bart M. P.
    Pieterse, Astrid
    ALGORITHMICA, 2019, 81 (10) : 3865 - 3889
  • [35] Improvement on constrained multi -degree reduction of Bezier surfaces using Jacobi polynomials
    Lu, Lizheng
    Zhao, Shiqing
    Hu, Qianqian
    COMPUTER AIDED GEOMETRIC DESIGN, 2018, 61 : 20 - 26
  • [36] Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials
    Bart M. P. Jansen
    Astrid Pieterse
    Algorithmica, 2019, 81 : 3865 - 3889
  • [37] Constrained multi-degree reduction of rational Bezier curves using reparameterization
    Cai Hong-jie
    Wang Guo-jin
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (10): : 1650 - 1656
  • [38] Degree Reduction of S-λ Curves Using a Genetic Simulated Annealing Algorithm
    Lu, Jing
    Qin, Xinqiang
    SYMMETRY-BASEL, 2019, 11 (01):
  • [39] Constructing pairing-friendly elliptic curves using Grobner basis reduction
    Benits Junior, Waldyr D.
    Galbraith, Steven D.
    CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2007, 4887 : 336 - 345
  • [40] Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bezier curves
    Bhrawy, A. H.
    Doha, E. H.
    Saker, M. A.
    Baleanu, D.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 302 : 369 - 384